
AD-A240 984

DR&CG DOCUMENT 155-91

GENERAL PRINCIPLES OF
DIGITAL FILTERING AND A SURVEY
OF FILTERS IN CURRENT RANGE USE DTJC

ft E LEZ-C I-'E,
M EP.P4. 7,199

DATA REDUCTION & COMPUTER GROUP

RANGE COMMANDERS COUNCIL

WHITE SANDS MISSILE RANGE
KWAJALEIN MISSILE RANGE

YUMA PROVING GROUND
ELECTRONIC PROVING GROUND

DUGWAY PROVING GROUND
--"___ I

PACIFIC MISSILE TEST CENTER =54
NAVAL WEAPONS CENTER

ATLANTIC FLEET WEAPONS TRAINING FACILITY __

NAVAL AIR TEST CENTER
NAVAL UNDERWATER SYSTEMS CENTER

EASTERN SPACE AND MISSILE CENTER
AIR FORCE DEVELOPMENT TEST CENTER
WESTERN SPACE AND MISSILE CENTER

CONSOLIDATED SPACE TEST CENTER
AIR FORCE FLIGHT TEST CENTER

AIR FORCE TACTICAL FIGHTER WEAPONS CENTER

Distribution Statement A: Approved For Public Release;
Distribution Unlimited.

91 9 26 0 79



Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

- dir tn -M fo ir '~,strum, %r mch-m''fl.i IIa -FhmI WO POR7OCLJMENTATION 2 h burdo-i est -tht1 cr mj, i C l
2" 10" 1'C R 1 ,0 le 0 Re,01 rupt 04 0 188) W hnJ1"r' ( 003ENCY US 3. REPORT TYPE AND DATES COVERED

I_ August 1991 l

4. TITLE AND SUBTT E 5. FUNDING NUMBERS

General Principles of Digital Filtering and a Survey
of Filters in Current Range Use

6. AU1HOR()

7 PERFORMING ORGANIZATION NAfEf) AND ADDRESS(ES) H PLRFORMING ORGANIZATION

Data Reduction and Computer Group REPORT NUMBER

ange Commanders Council C
White Sands Missile Range, NM 88002 RCC Document 155-91

9. SPONSORING MONITORING AGENCY NptAF(S) A. , ADDRESS(ES) 10. SPONSORING./MONITORING

Range Commanders Council AGENCY REPORT NUMBER

STEWS-SA-R
White Sands Missile Range, NM 88002 same as block 8

Supersedes Document 155-71, AD A782678. Document 155-71 is rescinded.

, ,r -. * 2b DISTRIBUTION CODE

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

This document catalogues some types of digital filters widely used by the RCC
member ranges, explores the principles behind these filters, and shows the design
techniques for specific applications.

15, NUMBER OF PAGES

digital filtering, frequency domain, time domain, filters 196 -1
Ie. PRICE CODE

N oUITI PAGE , O ABSTTCt ASSFICATIN 0 LIMITATION OF ABSTACT

17 SVCJ ITY CA S WCF-,,T,'rIO 8 L S -IIT Y(LASt 1( 1 -0N i ,A

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED NONE
NSI"J 15'10 ") , 28 S)-r-d -irtr 298 ," v 2 131y:

*'- 2,,( 3€'r% , ( .- "4



GENERAL INSTRUCTIONS FOR COMPLETING SF 298
The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave Blank) Block 12a. Distribution/Availablity Statement.
Denote public availability or limitation. Cite

Block 2. Reort Date. Full publication date any availability to the public. Enter additional
including day, month, and year, if available (e.g. limitations or special markings in all capitals
1 Jan 88). Must cite at least the year. (e.g. NOFORN, REL, ITAR)

Block 3. Tye of Report and Dates Covered.
State whether report is interim, final, etc. If DOD - See DoDD 5230.24, "Distribution
applicable, enter inclusive report dates (e.g. 10 Seenon Technial
Jun 87 - 30 Jun 88). Statements on Technical

Documents."

Block 4. Title and Subtitle. A title is taken from DOE - See authorities
the part of the report that provides the most NASA - See Handbook NHB 2200.2.
meaningful and complete information. When a NTIS - Leave blank.
report is prepared in more than one volume,
repeat the primary title, add volume number,
and include subtitle for the specific volume. On Block 12b. Distribution Code.
classified documents enter the title
classification in parentheses. DOD - DOD - Leave blank

DOE - DOE - Enter DOE distribution categories
Block 5. Funding Numbers. To include contract from the Standard Distribution for
and grant numbers; may include program Unclassified Scientific and Technical
element number(s), project number(s), task Reports
number(s), and work unit number(s). Use the NASA - NASA - Leave blankfollowing labels: NTIS - NTIS - Leave blank.

C - Contract PR - Project
G - Grant TA -Task
PE - Program WU - Work Unit Block 13. Abstract. Include a brief (Maximum

Element Accession No. 200 words) factual summary of the most
significant information contained in the report.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing Block 14. Subject Terms, Keywords or phrases
the research, or credited with the content of the identifying major subjects in the report.
report. If editor or compiler, this should follow
the name(s). Block 15. Number of Pages. Enter the total

Block 7. Performing Organization Name(s) and number of pages.
Areea) Self-explanatory. Block 16. Price Code, Enter appropriate price

Block 8. Performing Oranization Report code (NTIS only).
Number, Enter the unique alphanumeric report
number(s) assigned by the organization Blocks 17.- 19. Security Classifications.
performing the report. Self-explanatory. Enter U.S. Security

Classification in accordance with U.S. Security
Block 9. Sponsoring/Monitoring Agency Regulations (i.e., UNCLASSIFIED). If form
Names(s) and Address(es). Self-explanatory. contains classified information, stamp

Block 10. Soonsoring/Monitoring Agency, classification on the top and bottom of the page.

Report Number. (If known)
Block 20. Limitation of Abstract. This blockBlock 11. Suoplementary Notes. Enter must be completed to assign a limitation to the

information not included elsewhere such as: must b e ete to (nlimited) o the

Prepared in cooperation with...; Trans. of ..., To abstract. Enter either UL (unlimited) or SAR

be published in .... When a report is revised, (same as report). An entry in this block is

include a statement whether the new report necessary if the abstract is to be limited. If

supersedes or supplements the older report. blank, the abstract is assumed to be unlimited.
Standard Form 298 Back (Rev. 2-89)



DOCUMENT 155-91

GENERAL PRINCIPLES OF
DIGITAL FILTERING AND A SURVEY

OF FILTERS IN CURRENT RANGE USE

AUGUST 1991

Prepared by

Efta Reduction and Computer Group
Range Commanders Counc I I

Published by

Secretariat
Range Commanders Council

White Sands Missile Range
New Mexico 88002



TASILE OF CONTENTS

Pago

CHAPTER I - GENERAL PRINCIPLES OF DIGITAL FILTERING ........... 1-1

1.1 Time Domain Measurement Data......................... 1-3
1.2 Error Assumptions..................................... 1-5
1.3 Basic Purpose and F!Iter Use......................... 1-7
1.4 Lirar Filters..............................1-8
1.5 Filter Weighing Functions............................ 1-9
1.6 General Purpose Filters.................... ..... .... 1-10
1.7 Special Purp-ose Filters.............................. 1-10
1.8 Nonrecursive Filters ................................. 1-10
1,9 Recursive Filters ........................ 1-11
1.10 Filter Weights Construction.......................... 1-12

CHAPTER 2 -FILTERS ANALYSIS IN THE TIME DOMAIN................ 2-1

2.1 Filter Characteristics Analysis...................... 2-1
2.2 Autocorrelation........................................2-1
2.3 Unit Impulse Response................................. 2-2
2.4 Variance Reduction Factor................. ........... 2-5
2.5 Simulation................................. ........... 2-7
2.6 Monte Carlo Method s ............................. 2-8
2.6.1 Generation of Random Numbers From a General

Distribution Function.............................. 2-9
2.6.1.1 Definition of Discrete Case........................... 2-9
2.6.1.? Method of Random Number Generation................... 2-9
2.6.1.3 Method of Random Number Generation................... 2-10
2.6.2 Random Numbers From a Uniform Distribution.......... 2-10
2.6.3 Random Normal Deviates............................... 2-11
2.7 Residuals............................................. 2-12

CHAPTER 3 - FILTER ANALYSIS AND DESIGN IN THE FREQUENCY
DOMAIN........................................... 3-'k

3.1 Analysis of Filter Characteristics in the Time
Domain.............................................. 3-1

3.2 Discrete Fourier Transform....................... .... 3-1
3.3 Transfer Function of Filter.......................... 3-5
3.4 Cutoff Frequency, Roll-Off, and Quality of Filter 3-8
3.5 Phase Shift of Filter..................... ........ ... 3-11
3.6 Construction of Filter Weights ........................ 3-11
3.7 Aliasing.............................................. 3-13

*3,7.1 Aliasing in the Time Domain.......................... 3-14
3.7.2 Aliasing in the Frequency Domain..................... 3-16
3.7.3 Sampling Theorem and the Nyquist Frequency ...........3-17
3.8 Stability of Filter................................. 3-18



Page

CHAPTER 4 - CATEGORIES OF DIGITAL FILTERS .................. 4-1

A.1 Low-Pass Digital Filters............................. 4-1
4.2 High-Pass Digital Filters............................ 4-2
4.3 Band Pass Filters..................................... 4-3
4.4 Band-Rejection Filters............................... 4-5
4.5 Phase-Shift Filters................................... 4-7
4.6 Filter Combirations...................................4-7

CHAPTER 6 - FREQUENCY DOMAIN FILTER DESIGN.................... 5-1

5.1 Infinite Impulse Response (111R) Filter Design ........ 5-1
5.1.1 Modes of IIR Filter Expression....................... 5-2
5.1.1.1 Direct Form........................................... 5-2
5.1.1.2 Cascade Form..........................................5-3
5.1.1.3 Parallel Form.........................................6-
5.1.2 Converting From Analog to Digital .................... 5-6
15.1.2.1 Impulse Invariance........................ ........... 5-7
5.1.2.2 Bilinear Transformation..............................5-9
5.1.2.3 Direct Mapping of Differentials...................... 5-11
5.1.2.4 Matched Z-Transformation............................. 5-15
5.1.3 Low-Pass IIR Filters........................ ......... 5-16
5.1.3.1 Butterworth Filters........................ .......... 5-16
5.1.3.2 Chebyshev Filters.................................... 5-17
5.1.3.3 ElIliptic Filters............................. ........ 5-18
5.2 Finite Impulse Response (FIR) Filter Design......... 5-20
5.2.1 Modes of FIR Filter Expression....................... 5-20
5.2.1.1 Direct Form.......................................... 5-21
5.2.1.2 Cascade Form......................................... 5-21
5.2.1.3 Frequency Sampling Form.............................. 5-21
5.2.1.4 Linear-Phase Form.................... *'* ... ....... * 5-22
5.2.2 FIR Filter Design Techniques......................... 5-22
5.2.2.1 Windowing............................................. 5-23
5.2.2.2 Frequency Sampling Design............................ 5-28
5.2.2.3 Equiripple Design.................................... 5-29

CHAPTER 6 - KA\LMAN FILTERS..................................... 6-1

6.1 Lineir Discrete Kalman Filter........................ 6-3
6.1.1 Definitions................. .... .............. ....... 6-3
6.2 The Linear Continuous Kalman Filter.................. 6-7
6.3 Extended Kalman Filters.............................. 6-9
6.4 Example............................................... 6-12

IVI



Pace

CHAPTER 7 - FILTERS IN CURRENT RANGE USE ...................... 7-1

7.1 Least Squares Filters .............................. 7-1
7.1.1 Simple Moving Average Filters ......................... 7-1
7.1.2 Least Squares Polynomial Moving Arc Filters ........ 7-2
7.2 Position and Velocity Constrained L-a-t Square

F ilters .......................................... 7-5
7.2.1 Position Constraint ................................ 7-6
7.2.2 Velocity Constraint ................................ 7-6
7.3 Orthogonal Polynomials .................. ........... 7-7
7.4 Least Squares Polynomial Moving Arc Filters Using

Recursive Sums ................................... 7-10
7.5 Derivative Information Recovery by a Selective

Integration Technique (DIRSIT) ..................... 7-12
7.6 Digital Filter X (DFX) ............................. 7-16
7.7 Quadratic Digital (QD) Filter ........................ 7-19

APPENDIX A

APEP ................................................... A -2
FAST LEAST SQUARES ..................................... A-4
WEIGHED LEAST SQUARES .................................. A-5
WLSRE IN MIT026 ........................................ A-6
M-STATION .............................................. A-8
PBS PROGRAM, M-STATION ................................. A-9
PBS PROGRAM, DERIVE .................................... A-10
PBS FILTER ............................................. A-11
P5'S PROGRAM, OPFILT .................................... A-12
ATAGAS KALMAN FILTER ..................................... A-13
MOTION TRACKING KALMAN FILTER .......................... A-14
TEC TRACKER ............................................ A-16
DRIFT TRACKING KALMAN FILTER ........................... A-16
EATS KALMAN FILTER ..................................... A-17
TRIDENT KALMAN FILTER .................................. A-18
QD - WSMR .............................................. A-19
QD - EGLIN ............................................. A-20
QD - APO SAN FRANCISCO .................................. A-21
QD - YUMA .............................................. A-22
QUADRATIC POLYNOMIAL FILTER ............................ A-23
OD - NATC .............................................. A-24
AVRAGE ................................................. A-25
DUZ , . .. ........ ....... .. ............ A-20DIFFR A -

. . . . ...... ..................................... ..... ... . - 07

D !RS IT .................................................. A 29
UFTAS FILTER OVERLAY ................................... A-30
BE t .................................................... A-3 1
RTUF ................................................... A -33
RF ILTR ................................................. A-34
RCHECK ................................................. A-35

V



APPENDIX A (CONT'D) PAe

EYBALL ....................................... A-36
ON-AXIS ...................................... A-37
DYN043 ................................................. A-38
GNFL A...................................................A-39
GNSM ................................................... A-40
F IRF ILT .............................................. . A-41
RECFLT ................................................. A-42
FILMAX .- 3.................................................
MDPTI ................................................ A-44
SMW . ................................................ . A-45

SMW .- 4.................................................... 6
FREQUENCY RESPONSE ANALYSIS .............................. A-47

REFERENCES

A.cession Tor

N4T S GA&I

DTIC TAB '

D ,t 0 u n/ .. .

_1AV81]- anol/or
Dist special

vi



LIST OF FIGURES

CHAPTER 1 - GENERAL PRINCIPLES OF DIGITAL FILTERING

:igure No. Pegs

1-1 Graph of power spectrum G(e) versus frequency v,
comparing true frequency signal {Y(n)l with
noisy frequency signal {s(n)} .................... 1-6

1-2 Power spectrum of Gaussian white noise ............ 1-7

CHAPTER 2 - FILTER ANALYSIS IN THE TIME DOMAIN

Figure No.

2-1 Smooth input data. Sarroling pariod - 0.05
seconds ........................ ............... 2-6

2-2 Real-time response. Point span - 20; sampling
period - 0.05 seconds ............................ 2-6

2-3 A closed-loop simulation logical diagram ........ 2-8
2-4 Graphic description of how the random number

x(k) is determined. It is obtained with a
cumulative distribution functin F(x(n))
(in top graph) or F(x) (in bottom graph) and
a random variable y(k) uniformly distributed
over [0 ,11 ................ ................... 2- 11

CHAPTER 3 - FILTER ANALYSIS AND DESIGN IN THE FREQUENCY DOMAIN

Figure No.

3-1 Comparison of multiplications required by direct
calculation and FFT algorithm ................... 3-3

3-2 Power spectrum of output, where the input is
white noise and where the filter passes only
frequencies between fland f2 . . . . . . .. . . . .. ... ... .  3-4

3-3 Ideal low-pass filter ........................... 3-6
3-4 Ideal high-pass filter .......................... 3-7
3-5 Ideal band-pass filter .......................... 3-7
3-6 Tolerance limits for approximation of ideal

low-pass filter ............................... 3-9
.3-7 Comparison of roll-offs for filters A and B......3-10
3-8 Comparison of the qual ity of filter A with the

qual ity of fi lter B .......................... . 3-10
3-9 Foldover or al :asing resulting from observing a

wheel's Increasing rotational speed ........... 3-14
3-10 Aliasing in the time domain ...................... 3-15
3-11 Bottom sinusoid shown as the sum of three

frequency components, C2, C1, and S1 .......... 3-15

vii



LIST OF FIGURES (Cont'd)

Figure No. Page

3-12 Sampling relations for analog and digital
systems for prcperly sampled inputs ........... 3-16

3-13 The effects of undersampling on the digital
frequency response ............................ 3-17

CHAPTER 4 - CATEGORIES OF DIGITAL FILTERS

Figure No.

4-1 Typical frequency responase of low-pass filter
(represented by the curved line) ............... 4-2

4-2 Frequency response of wide band pass filter ..... 4-4
4-3 Method of converting a low-pass filter with

shallow roll-off into a band pass filter ...... 4-5
4-4 Frequency response of band-rejection filter ..... 4-6

CHAPTER 5 - FREQUENCY DOMAIN FILTER DESIGN

Figure No.

5-1 Direct form realization of IIR filter ............. 5-3
5-2 Cascade form realization of the IIR filter ...... 5-4
5-3 Parallel-form real ization with the real and

complex poles grouped in pairs .................. 5-6
5-4 The mapping of a horizontal strip of width 2n/T

in the s plane to the unit circle of the z
plane, through the impulse invariance method.. 5-8

5-5 The mapping of the left half of th'. s plane to
the unit circle of the z plane, using the
bilinear transformation ......................... 5-10

5-6 The relation between analog and digital
frequence scales for the bilinear transforma-
tion ..................... ..................... . 5-10

5-7 s plane to z plane mapping of jf axis for
method of backward differences ................. 5-13

5-8 s plane to z plane mapping of jQ axis for
method of forward differences .................. 5-14

5-9 Dependence of Butterworth magnitude
characteristic on the order N ................. 5-17

5-10 Type I and II Chebyshev filters o; odd and even
orders ...... .................................. 5-18

5-11 Equirippie approximation in both passband and
stop band ..................................... 5-19

viii



LIST OF FIGURES (Cant'd)

Figure No. Page

5-12 (a) Ideal low-pass filter characteristic with
cutoff at Go and (b) Impulse response
corresponding to ideal low-pass filter ........ 5-23

5-13 (a) Truncated version of impulse response In
figure 5-12, (b) Truncated response shifted
so as to make system causal, and (c) Filter
frequency responce resulting from truncation
of impulse response ........................... 5-24

5-14a Common window functions and their transforms:
(a) rectangular, (b) triangular (Fejer-
Bartlett), (c) Hanning, (d) Hamming, and
(e) Ka iser .................................... 5-26

5-14b Common window functions and their transforms:
(a) rectangular, (b) triangular (Fejer-
Bartlett), (c) Hanning, (d) Hamming, and
(a) Ka iser .................................... 5-27

5-15 Commonly used windows for FIR filter design ..... 5-28
5-16 Equiripple approximation of a low-pass filter... 5-30

CHAPTER 7 - FILTERS IN CURRENT RANGE USE

7-1 Example acceleration curve ..................... 7-14
7-2 Corresponding velocity curve ................... 7-14
7-3 Example acceleration curve for t > t1 . .. . . .. . ... 7-15

LIST OF TABLES

CHAPTER 3 - FILTER ANALYSIS AND DESIGN IN THE FREQUENCY DOMAIN

Table No.

3-1 COMPARISON OF REQUIRED MULTIPLICATION OPERATIONS
USING THE FFT AND THE DIRECT DFT .............. 3-3

CHAPTER 5 - FREQUENCY DOMAIN FILTER DESIGN

5-1 COMMON WINDOWING FUNCTIONS ...................... 5-25

CHAPTER 6 - KALMAN FILTERS

6-1 SUMMARY OF DISCRETE KALMAN FILTER EQUATIONS ..... 6-6

ix



LIST OF TABLES (Cont'd)

Table No. Pg

6-2 SUMMARY OF CONTINUOUS KALMAN FILTER EQUATIONS
(WHITE MEASUREMENT NOISE)....................... 6-8

CHAPTER 7 -FILTERS IN CURRENT RANGE USE

7-1 A STARTING CONDITION FOR A DIRSIT FILTER WHOSE
SPAN IS 2m+1 POINTS..................... ....... 7-12



CHAPTER 1

GENERAL PRINCIPLES OF DIGITAL FILTERING

Data reduction includes an inherent requirement to filter
measured data. The part of the measured values which is noise,
that Is, which does not characterize the phenomena being mea-
sured, must be removed so that the data expresses the character-
istics of the system being tested. (A system is a device which
interrelates the excitation and the response.) Often it is
necessary to perform integration and differentiation based on
measured data. The digital filter is a means by which these
operations can be performed. Without data filtering, the mea-
surements and the derived valeusq..rom these measurements often
depict physical phenomena that are virtually impossible. Air-
craft and missiles are predictable, so it is possible to design
filters which model their physical performance.

The application of digital filters is continually growing as
more computers are placed in line in the measuring systems, as
classical measurement systems are being upgraded, and as new
measuring data concepts are being introduced. Video signal image
enhancement, video signal transmission, the Global Positioning
System, and aircraft onboard systems will necessitate the devel-
opment of new digital filtering theories. Filters havn many
different functions; for example, filters are used in water
purification to remove those particles which are undesirable.
Filters are also used in coffee pots to keep the grounds separate
from the liquid. Digital filters serve much the same purpose;
they separate true data from errors which are added during the
measurement process.

Signal processing filters were originally circuits with
frequency selection characteristics. Some of the filters which
developed as a result of this concept were the Butterworth, the
Chebyshev, and the elliptic. These filters can be designed to
meet some specific criteria regarding amplitude and phase re-
sponse, but because filters of this type work on data frequency
characteristics, they are not very usaful in their original
realizations on data recorded in digital form. There are time
domain realizations which exhibit similar characteristics on time
domain data. When digital realizations exist in software, a
design error can be easily corrected; when they do not exist,
however, roundoff error, storage requirements, and delays become
important design factors.

Digital filters are not always derived from a frequency
domain realization. Filters can be used directly with digital
data, based on the statistical characteristics of the useful
signal and noise. The Kalman filters belong to this class of
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filters. Some of the principles used in filters of this type
were developed by Gauss in his concept of weighted least squares.
Although he used this concept in data analysis, it was not until
the advent of digital computers that the full potential of this
concept was real ized. A few extensions have been added to Gauss'
work, and many techniques have been developed based on his
principles.

Related to digital filters are the terms smoother, filter,
predictor, 3nd wild point. These terms are included because the
range surveys in appendix A include references to these terms.
Given measurements in the time interval [O,t], a smoother produc-
es estimates for times ts < t, a filter produces estimates for
times tf = t. and a predictor produces estimates for times
tp > t. Thus, optimal estimates are obtained postflight by
smoothers (using all recorded data) and are obtained in real time
by filters (using all uata up to the present). A wild point is a
measured data value that fails to meet some predetermined statis-
tical iriteria. A "wild point application" of a digital filter
is the replacement of a wild point.

A few of the current digital filtering applications by the
Range Commanders Council (RCC) member ranges are

(1) in rocket firing to give position, velocity, and
acceleration in real time for range safety information;

(2) in inertial navigation where navigation errors
have to be estimated in real time for corrections to be applied;

(3) in radar and theodolite data processing to give

traie:tury estimates for position, velocity, and acceleration;

(4) in satellite trajectory determination;

(5) in processing airplane flight test data; and

(6) in reconstructing photographs or voices which have
been transmitted digitally.

Tnis document catalogues some types of digital filters
widely used by the RCC member ranges, explores the principles
behind these filters, and shows the design techniques ror specif-
ic appiications. Obviously, a rigorous, theoretical treatment of
the subject cannot be given in this document, nor can all the
details of design techniques. The intent is to give the reader a
feei f:r the subject of digital filtering as defined by the
members of the RCC Data Reduction and Computer (oroup. Noted are
the appropriate bibliography references for any of the subject
areas where more detail might be helpful to the reader.
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1.1 Time Domain Measurement Data

Two representations can be used for discrete data in the
time domain. The most commonly used definition for a sampled
function is the sequence {f(n)} whose elements are

f (n) = (t (n) ) =f (t)I t=t (n) (1-i)

where n is an index for the times at which samples are taken and
f(t) is the continuous function from which the samples are taken.
In further discussion in this paper, this reoresentation will be
used for measurement data. Another mathematical representation
for a sampled function in the time domain, f*(t), is

f*(t) = £ f(t(k)) S(t-t(k)) (1-2)

k

where the t(k)'s are the instants in time at which the function
is sampled and 6(t) is the Dirac delta function or impulse func-
tion having the properties of

0 t a
6(t-a) = (1-3)

a+6

f S(t-a) dt =  1 6 > 0 (1-4)

The above definition of 6(t) is from reference 47, page 15.
Another common definition is

6(t) = 0, t#0,
6(0) = w, and

f 6(t)dt = 1. 6 > 0 (1-5)

As explained in reference 48, page 70, the function represents an
imaginary rectangle whose base is 0, height is -, and area is 1.

Tht first representation allows filters to be analyzed using
some of the calculus techniques of continuous functions and
allows nridging of the gap between discrete and continuous
analys:,-, In many current papers on this topic, the mathematical
model fur the measurements and the state of a system are given in
terms of vectors. In this notation, a group of variables is
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treated as one vector variable; hence, a compactness of notation
is obtained, and very general filters can be discussed without
becoming immersed in details. For the sake of completeness, this
representation is mentioned here.

Consider a sequence of measurements which are represented in
a form similar to equation (1-2). Instead of considering a
sequence of real numbers, consider a sequence of vectors, IX(n)}.
A particular element X(n) of this sequence consists of measure-
ments made at time t(n) and should relate to the true state of
the process from which the measurements were taken. For In-
stance, X(n) could consist of measurements of azimuth, elevation,
and range for some object in space. It is known that the se-
quence IX(n)) can be related, for example, to the position,
velocity, and acceleration in the x, y, and z directions, Now
assume that the true state of the process Y(t) can be represented
by the differential equation

dY(t) - F(Y(t) t) (1-6)
dt

where Y(t) is a vector composed of scalar functions y(t,1),...,
y(t,N) and all the derivatives of each of these scalars;
F(Y(t),t) is a vector function that is, in general, nonlinear and
has as each element a function of all the elements in Y. Y(t) is
known as the state vector and could consist of x, y, and z
coordinate positions along with the first and second derivatives
of these positions, for instance. Further assume that X(n), the
measurement vector, is related to the state vector as

X(n) = G(Y(t(n)),t(n)) + N(n) (1-7)

where 6 is the measurement function of the state variable and
N(n) is the noise vector or the measurement error vector. In
many applications, equation (1-6) constitutes a linear and
homogeneous system, and the relationship between the measurement
vector and the state vector is assumed linear. In this case,
equations (1-6) and (1-7) reduce to

dY _ A(t)Y(t) (1-8)

dt

X(n) = M(n)Y(n)+N(n) (1-9)

where A(t) is a matrix function of time and M(n) is a matrix
known as the measurement matrix. In digital filtering, equations
(1-6) and (1-7) are used to give some type of best estimate for
Y(t).
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In many cases, the measurements are made on certain elements
of the state vector itself; that is, the measurement and state
vector frequently represent the same test item. For example, an
airplane's azimuth and elevation may be measured from several
different stations to obtain its "true" azimuth and elevation.
In this case, the matrix M(n) is diagonal and contains only 1s
and Os on the diagonal. Most future discussions will operate
under this assumption. For ease of understanding, this document
will consider the case where an attempt is made to estimate one
variable from measurements made on that variable. The state
differential equation will be implied rather than given explicit-
ly.

1.2 Error Assumptions

In digital filter analysis, three types of errors are
considered: (1) errors in the mathematical model, (2) random
errors in the observations, and (3) unwanted discrete frequencies
in the observacions. The first type of error is caused by a lack
of understanding of the physical syscem for which the estimate is
to be made. Vhe second error type ;s due to inaccurate measure-
ments and is assumed to be normally distributed and unbiased.
The third error type is caused by either the reception of noise
along with the desired frequency signal or the intention to block
out one or more bands of frequencies to suit a specific applica-
tion. (If a digital filter is used for the second reason, then
the third type of "error" is not really an error.)

The random errors are discussed next. Assume that 1x(n)) is
a sequence of measurements corrupted by noise {e(n)) and that the
true value of the process is given by {Y(n)}. In all applica-
tions the noise is considered to be additive so that the equation
relating the state variable to the measured variable at time t(n)
is given by

x(n) = Y(n)+e(n). (1-10)

It is often assumed that the noise is Gaussian with zero mean and
uncorrelated with itself. The quantity which is most often used
to characterize the noise is the variance given by equation

1 N
2 r e(i) 2  (1-11)

N i=1

where N is the total number of measurements being considered. How
much this variance is reduced by the filter may be used as the
criterion for determining the filter characteristics. Caution
must be exercised when using this criterion, because le(i)l is a
time sequence and thus, in most cases, correlated with itself.
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Now consider errors of unwanted discrete frequencies in the
observations. Again consider the relationship between the true
value Y(n), the measurement x(n), and the error e(n) to be of the
form in equation (1-10) with le(n)l being a signal containing
unwanted frequencies. In this case, it is assumed that fY(n)l
and le(n)f are not in the same frequency band. This property is
best illustrated using the power spectral density function, the
quantity which indicates the extent that a particular range of
frequencies present in the data. In the case when the frequency
range of the signal and error are nonoverlapping, then the power
spectral density function G(4) would appear as shown in figure
1-1.

G (4))
Y (n)

Ye~n)

Figure 1-1. Graph of power spectrum G(4) versus frequency
0, comparing true frequency signal 1Y(n)) with
noisy frequency signal fe(n)l.

In this case. a filter would be designed having a frequency
response such that IY(n)) would pass through unchanged, whereas
le(n)) would be suppressed as much as possible.

The )ower spectral density function for Gaussian white noise
is a constant as shown in figure 1-2. When le(n)l is of this
form, the signal and noise are in overlapping frequency ranges;
hence, part of the noise is treated as signal and is not sup-
pressed. However, the desired signal is often of a low enough
frequency and of a sufficient amplitude that most of tne noise in
this freuency range can be neglected.
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Figure 1-2. Power spectrum of Gaussian white noise.

1.3 Beslo Purpose and Filter Use

Filters are used to ascertain information about a process
from measurements made on that process when these measurements
are corrupted by noise. Any of the following data should be
incorporated into the filter if known:

(1) the differential equations describing the process,

(2) the statistics describing the noise, and

(3) the frequency range of the signals describing the
process.

In many applications the differential equation describing the
system is not known. In these cases, it is often assumed that
over small enough time intervals the differential equation of the
process is given by

dky
= 0 (1-12)

dtk

for some positive integer k.

The noise most often encountered in physical applications is
Gaussian; however, often the variance is not known. When the
variance of the noise is not known, a least squares criterion is
often used to design a filter. The least squares criterion
requires that

N
I((n)-y(n)) = a minimum

n=0
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where li(n)} is the sequence obtained by some type of fit to the

data, which is used to give a filtered output. Combin.ng equa-

tions (1-12) and (1-13) gives birth to the many filters which are

based on least squares polynomial approximation. There are many

variations of these filters used in a variety of applications in

both real and nonreal time. Probably the widest application of

these filIers is found in the processing of tracking data. For

example, in processing radar data, azimuth, elevation, and range

are measured. From these measurements a raw x, y, and z are
computed. The digital filter i-s used to obtain smoothed values
for x, y, and z as well as the first and second derivatives for

these quantities. Other uses for filters, based on least squares
polynomials, include processing of theodolite tracKing data and
obtaining rates of climb and accelerations from altitude and
airspeed data measured onboard an airplane. When the differen-

tial equation describing the process and the statistics of the
noise are both known, then a Kalman filter can be used to esti-
mate the prncess. The Kalman filter has found wide application

in the fields of guiaance and navigation. (The Kalman filter is

discussed in chapter 6.)

When the signal describing the process lies in a certain

frequency band, a filter is designed which will allow only'the
frequencies in this band to pass. (Passing frequencies of a

certain band are discussed in chapter 4.) These filters are used
for square-law detection, frequency-selective smoothing, phase

and amplitude determination, and smoothing differentiation.

Specific applications include processing of digitally transmitted
photograons, medical records, and tracking data. The determina-

tion of the best filter for any particular application requires a

careful analysis. The filter which is ultimately selected will
depend or the physical system under analysis, the type of mea-
surement,. being taken, and the constraints in computation time.

1.4 Linear Filters

Linear filters are filters which conform to

F(x+ay) = F(x)+aF(y), (1-14)

where F denotes the filtering operation, x and y denote inputs to
the )-ilter, ano a is a constant. For such filters, the output at

a particular time equals the input multiplied by a set of weights

which art not a function of the output as given by the equation

y(k) = E jh(k,j)x(k-j) (1-15)

The set in(k,j)f denotes the weighting function described in

naragraph 1.5. The advantage of linear filters is that they
operate on signal and noi=e independently, so it is relatively
eas, to aetermine how they will treat both signal and noise.
Most of the filters in current use are linear; least squares
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moving-arc polynomials and most applications of frequency-con-
strained and Kalman filters fall in this category. (The least
squares moving-arc polynomials filter is discussed in chapter 7.)
If the system under consideration is nonlinear, then some type of
linearizing scheme is used so that some of the nice properties of
linearity can be retained.

1.5 Filter Weighing Functions

To illustrate the idea of filter weighing functions, consid-
er a continuous linear filter having one input variable and one
output variable. Such a filter is defined by

00

y(t) =J h .,T)x(t-T)dT (1-16)

The integral in equation (1-16) is the well-known convolution
integral. Here x(t) is the input, y(t) Is the output, and h(t,T)
is the filter weighing function. The discrete analog to equation
(1-16) is

y(j) k h(j,k)x(j-k) (1-17)k

where tj)) is the input sequence, (y(j)) is the output se-
quence, and fh(j,k)) is a set of weights corresponding to the
weighing function previously defined. The last equation charac-
ter. as the nonrecursive digital filter discussed in paragraph
1.8. The summation in equation (1-17) is known as the convolu-
tion sum. The filters, as defined, can be time varying; that is,
the weighing function can change with time. In the continuous
case, if h(t,T) is a function of T only, then the filter is time
invariant. Similarly, in the discrete case, if Ih(j,k)) is a
function of k only, then the digital filter is time invariant.
The equation for a digital filter then becomes

y(j) = E h(k)x(j-k) (1-18)

A digital filter is time invariant when the system is being
modeled by a constant coefficient differential equation, and the
relationship between the state variables and the measurements
does not vary with time. When measurements are made at equal
increments in time, the set of weights for a time-invariant
filter remains the same for each output point. Thus, time
invariarce is a desirable feature from a computational point of
view.
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1.6 General Purpose Filter.

Many filters in use today are ganeral purpose; that is, they
are not restricted to a particular application. The most common-
ly used of these filters are the least squares polynomial fil-
ters. these filters are usually designed so that the degree and
number of points to be used can be specified. Within this
category there are many variations. For Instance, a filter can
be constrained so that it passes through the last filtered point
and has continuous slope through that point. In addition, the
specific implementation can vary; for example, the recursive sums
or orthogonal polynomials are different implementations of the
polynomial filters.

Most of the frequency-constrained filters mentioned in
paragraph 1.4 are general-purpose filters. Any one of these
filters can be used in a number of applications. Some uses of
general-purpose filters were mentioned in paragraph 1.3. In many
instances, these filters can be moved from one application to
another without modification.

1.7 Speolal Purpose Filter.

Certain filters are designed for a special mission. Once
designed and checked out, these filters then ideally remain the
same fcor the duration of the mission. Two important categories
of special purpose filters are range safety and navigation
system An example of a special purpose range-safety filter is
the QD filter, (see paragraph 7.7). This filter is suited for
its mission because of the speed with which it can deliver
smoothed position, velocity, and acceleration in real time. It
also has the ability to do spike editing in real time. (Spike
editing is defined as editing out the wild points or spikes.)
For navigation filtering, special implementations of the Kalman
filter are usually used. The Kalman filter is well suited for
this application because of its ability to give optimal estimates
of a system's state variables in time.

1.8 Nonrecursive Filters

In paragraph 1.5, a digital filter was defined In equation
(1-17). For a filter defined in this way, each output point is a
function only of the input and the weighing function. Any filter
for which the current output is not a function of previous
outputs such as the one defined by equation (1-17) is said to be
nonrecursive. Nonrecursive filters are analogous to open-loop
filters in servomechanisms. Many implementations of the least
squares, polynomial filters and of the frequency-constrained
filters fall into this category. Such filters re not subject to
problems of instability; that is, an error occurring in a comput-
ed output point does not propagate into future output points.
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it the right-hand side of equation (1-18) represents a
finite sum, then it is called a finite impulse response (FIR)
system or FIR filter. In FIR filters, if the right-hand side of
equation (1-18) contains q terms, then the filter can have an
impulse respinse at most q samples long. If the last impulse
occurred more than q samples ago, the entire right-hand side of
equation (1-18) is zero. A presentation of design methods using
FIR filters, along with a summary of advantages and disadvantages
of using this filter type, is given in chapter 5.

1.9 Recursive FIlters

Recursive filters use past output values in computing the
current output value. These filters take advantage of past
computations in such a way that output values are used to yield
information about previous input values to the filter. In this
way, storage and computation time are saved. The general form of
a recursive filter having one input and one output is

N M
y(k) = E a(j)x(k-j) + E b(j)y(k-J) (1-19)

0 1

where ix(j)} is the input, fy(j)} is the output, and
1a(j),b(j);,j=1,..,} is the set of weights. Some recursive
filters (for example, Kalman and QD) use the previous output to
predict a value for the current output and u-ze the current
measured input to correct the current output. Recursive filters
are analogous to closed-loop filters in servomechanisms. Another
commonly used name for such filters is infinite impulse response
(IIR) tilters or IIR systems. In IIR filters, a!H outputs y(k)
will be influenced by all previous impulse responses a(j) in
equation (1-19) regardless of how large k is. Each impulse re-
sponse has an influence on an infinite number of terms y(k).

The savings in computation time and storage achieved by
using recursive filters do not come without a price. If not
properly designed, the filters can suffer from instability.
Because each filter is computed from previous values y(j),j<k, an
error induced in any one of these y(k)'s will have an effect in
each future y(k). If such errors do not die out as k increases,
then the filter is unstable and is not usable. Ways of analyzing
the stabil ity characteristics of filters are discussed in chapter
2. Another factor to consider in using recursive filters is the
fact that they are not self starting. For the first few output
points there will be no previous outputs to use in equation
(1-19). Hence, some other method must be devised through which
the initial y(k)'s are determined. Methods of choosing starting
values depend, of course, on the particular application in
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question and are discussed in references 1 and 42 and in chapter
7. A presentation of design methods using IIR filters, along
with a summary of advantages and disadvantages, is given in
chapter 5.

1.10 Filter Welahts Crnstruction

Again consider a nonrecursive, nontime-varying linear filter
of the form

y(k) : h(j,k)x(k- ) (1-20)
J

The problem in designing a filter is finding the weights Ih(J,k))
in such a way that some design criterion is satisfied. Some of
the examples discussed in succeeding chapters are

(1) choosing weights by requiring that the span of
ix(j)) under consideration be fitted by a least squares polynomi-
nal,

(2) choosing the weights using Fourier methods by
requiring that the frequency response of the filter fit an
idealized frequency response function, and

(3) using the z-transform to derive filter weights
from the transfer function of a given inalog filter (see chapter
3).

Whn the filter is recursive, and thus takes the form

N M
y(k) =  E a(j)x(k-j) + b(j)y(k-j) (1-21)

0 1

then there is a corresponding nonrecursive filter which is
theoretically the same. In this case, the weights are either
derived in terms of the corresponding weights for the nonrecurs-
ive case or are derived directly using z-transforms.
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CHAPTER 2

FILTER ANALYSIS IN THE TIME DOMAIN

2.1 Filter Characterltlos Analysis

Analysis of a filter in the time domain consists of deter-
mining the characteristics. These characteristics are

(1) Stability. With a unit impulse input to a recurs-
ive filter, the filter is unstable if the output oscillates or
never dies down to zero amplitude or attenuates.

(2) Attenuation. With a nonzero input parameter,
attenuation is the amount the filter has reduced its ampl itude in
the output.

(3) Time Lag. The amount of time it takes for a
filter to supply a best estimate of an input parameter.

(4) Distortion. Attenuating or amplifying amplitudes
of different frequencies by different amounts in an undesirable
manner is called distortion. If the filter causes minimal
distortion, it is a good fit or well-modeled

To analyze these characteristics, the following techniques are

frequentiy used:

(1) Autocorrelation

(2) Unit Impulse Response

(3) Variance Reduction Factor

(4) Simulation

(5) Monte Carlo Methods

(6) Residuals

2.2 Autocorrelaticn

When data are fed into a filter, the output data may be more
(linearlv) correlated in time than the input data: that is,
series ot output data values may be more correlated than their
corresponding series of input data values. The tvpe and amount
of this additional correlation will depend on the filter weights
which are used as data multipliers. For example, if the filter
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frequency response has large side lobe effects and passes fre-
quencies which were supposed to be suppressed, the resultant
output will show these effects and they can be measured If the
serial autocorrelation in the data is estimated. The serial
autocorrelation, used in analyzing time lag, is computed by

N-k
(x(i)-x(1)) (x(i+k)-x(2))

r(k) = (2-1)
N-k (x(i+kx2 1/2( -k(x(i)-X(1)) 2  

1/2)

where x(1) and x(2) are the means of the first N-k and the last
N-k data points and

N = number of points in the sample,
k = 0,1,2,..., M<N, the number of lags.

The value r(k) represents the (linear) correlation between the
first and last N-k data values from a series of N points. This
technique can be used in conjunction with simulation techniques
by entering white noise into the filter and then measuring the
autocorrelation of the output. The amount of correlation imposed
on the data by the filter is thus estimated.

Caution must be used if an attempt is made to "smooth" the
same data more than once in a sequential manner because of the
correlation which may be imposed on the data by the first smooth-
ing process. In cases where it is desirable to smooth position
and then again smooth computing velocity, a thorough analysis
should bi made to ensure that autocorrelation imposed by the
first smonthing process does not bias the estimates made by the
second process.

2.3 Unit Impulas Response

For a continuous, linear, time-invariant system, a unit
impulse response h(t) can be defined as the response of the
system at time t because of a unit impulse at time 0, that is,
because of 6(0). (Unit impulse is another term for impulse
function (see page 1-3.)) A system is linear if the input
clf 1 (t)+c 2 f2 (t) produces an output clgl(t)+c 2g2 (t) for all fl(t)
and f2 (t), where inputs f1 (t) and f2 (t) produce outputs gl(t) and

92(t).
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The input f(t) and output g(t) of the system are relateo by

f' ) = J h(,r)f(t-r)dr it2-2)

where h(r) is the unit impulse response, Thus. the output equals

The convolution of the unit impulse response anro the input.

For a discrete, linear, time-invariant system, the unit

impulse response is the sequence thni where h n is the response of

the system at state n caused by a unit impulse at state 0. For

the discrete case. the input-output relationslip can be described

as

0o

Yn= E hmXn- m  
(2-3)

m = -oo

where IxnI and 1yn are the input and outDut signals, and lhn Is

the unit impulse response.

For either case, the output of a linear, time-invariant

system is thus the convolution of its input and its unit imDulse
response. For this ourpose, equation (2-3) will represent the

system of interest, since digital fitters are defined to be

discrete, linear, time-invariant systems. As seen from equation

(2-3), i ne unit impulse response can be regarded as a set of
weights. Thus, from what was discussed in paragraph 1.5, the

unit impulse response completely determines the characteristics

of a digital filter. Reference can then be made either to t'e
weights, given past data, in the averaging process or to the unit
imDulse response.

in realitv, it is important to know how much a filter

distorts a deterministic input. One way to determine the distor-

tion is to analyze unit impulse response. The :-transform is a

convenient tool for the analysis of the response of digital

filters when trie unit impulse response is known. The z-transform

for a sequence ix j is defined as
n

X(z) = .nz- n (2-4)

Stated earl ier in this section is that the output the
system ,an be found by convolving the input ana jnit impulse
response. The oLutP'Ut can be found easier throuqri the use of the
z-transform. An e-ampie ta..en from reference 5.0 demonstrating

thL use of the z-tr'ansform in determining the oJrput signal or
the unit impulse response is described next.
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Let the input signal be 12 ii and the unit impulse response

be 18 4 2 II. Referring to equation (2-2), the Convolution
Theorem. which states that the z-transform of the convolution of
two functions is equal to the product of tne z-transforms of
those functions, is appl led (see reference 23 or 50). The

z-transfnrms of the input signal and unit impulse response are

2 + z- 1 and 8 + 4z - I + 2z - 2 + z- 3  (2-5)

The product of those z-transforms is

16 + 16z-1 + 8z - 2 + 4z - 3 + z- 4 . (2-6)

This polynomial is the z-transform of the output signal. Hence,

our outpJt signal is 116 16 8 4 1).

To find the impulse response, the input and output must be
given. Then, the Convolution Theorem can be appl ,ed by dividing
the z-transform of the output by the z-trinsform of the input and
expanding the result as a polynomial in z-. The coefficients of
this polynomial represent the impulse response. To find the
inpulse response, the process described in the previous example
is reversed. For any given filter, the unit impulse respcnse,
which returns to and remains at zero, is an indication of the
filter's stability, time-lag characteristic, and amplitude

attenuation.

Another means of specifying a filter is by its step re-
sponse, which is, the response to a constant signal. A constant
signal is represented by a step function, which is described as

0 t < a

u t-a) = (2-7)

The unit step function is the integral of the unit impulse
function. Likewise, the step response is the integral of the
impulse response. Quite often, the function used is equal to 1
for a firte period; that is, u(t) = 1 for a<t<b, for some b>a,
and u(t) = 0 for t>o.

Sometimes in actual practice, rather than using the impulse
function. a smooth input step function is generated. A smootn
input step function is a function that does not switch values
abruptly, as does the step function just defined, but rather that
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changes values in a continuous manner. There are many examples
in whicn a smooth step function simulates real-!ife situations
more accurately than does the ideal step function. For example,

the acceleration of a rocket at motor burnout oces not vanish

instantaneously, but tapers off to zero gradually.

As an example of using the step function, the smooth input

step function shown in figure 2-1 can be used as a model to
evaluate a typical general-purpose, recursive, second-order

filter. (An nth order filter is a filter that can be designed
with an nth order differential equation. The acceteration at

rocket motor burnout discussed in the previous paragraph can be
simulated using a second-order filter). The steo response is
shown in figure 2-2. A recursive filter must be given initial

values, since each output value depends on the previous output
value. The first three points in figure 2-2 represent the
initial values used by the prospectve filter.

2.4 Variance Reduction Factor

Let F be an arbitrary digital filter. Assurre that the input
and output of F are stationary random processes. A process is
called stationary if its statistics such as mean and variance are
not affected by a shift in the time origin. Theoretically.

assume trhat F has been filtering the same process for an infi-
nitely lcng time for the output to be stationary. Further,
assume tnat each of the noise processes for the input and output

data are uncorrelated with themselves. Let v(f) and v(2) be the
variances of the input and output random processes. Then the
var iance reduct on factor is defined as

v(2) (2-8)R -ii

the var antce reduction factor must be interpreted with caution.

oecaLisE trie assumptions underlying the estimation of variances
are, in most cases, not realistic. The parameter R is not
necessar ily less than one, although R is generaiv less than one

;n a practical case.
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2.5 Simulation

Ordinarily, it is assumed that a signal process s(t) and a

noise process n(t) defined for a discrete or continuous variable

t are additive resulting in a process denoted by s't) + n(t). A

filter is used to suppress n(t) and extract s(t) with the least

amount of distortion under a given set of operational criteria,

for example, variance reduction factor, impulse response, and

computation time. These factors usually vary from one process to

another depending largely on the values of s(t) and n(t) even for

a particular filter. It is therefore often des.red to examine

various response characteristics of a given filter applied to a

specific signal plus noise process s(t) + n(t). The objective is

to compare the filtered data, say s(t), obtained from s(t) + n(t)

against the originally known signal process s(t). The act of

perturbing s(t) with an additive noise process n(t) or filtering

s(t) + n(t) or both is called the simulation of the signal plus

noise process or of the filtering.

The simulation techniques are classified into two major

categories: hardware simulations and numerical simulations.

Simulated equipment tests and scale model experiments are typical

of the hardNare simulations. In the case of the numerical

simulations, the entire system to be analyzed must first be

represented by an appropriate mathematical model in the form of

s(t) + n(t), in which the contribution of various perturbations

is treated as the noise process n(t). The purpose here is to

concentrate on numerical simulations.

The numerical simulations are divided into digital, analog,

and hybrid. The digital simulations use digital computers as the

primary bimulation tools and are effective for discrete processes

of the form s(i) + n(i), i1,.... m. They are particularly

suited for highly accurate simulation. Similarly, the analog

simulations are made using analog computers or similar analog

devices and are suited for the simulation of a process continuous

in time. The hybrid simulations involve the mixture of both the

digital and analog simulations incorporating digital-to-analog or

analog-to-digital conversion processes or both. By the nature of

their construction, neither the analog nor the hybrid computers

can achieve a high degree of accuracy. Digital simulations have

become more frequently used as the primary tools for analyzing

systems performance and operational characteristics, even for

those processes with continuous time variables.

Va-,ous digital filters may be applied to the output process

of hardware simulations, digital simulations, or digitized values

of analog/hybrid simulations. The performance of the filters is

best evaluated under the conditions of the closed-loop simulation
setup in figure 2-3. In a closed-loop simulation., the signal
process s(t) is given a priori. The noise process n(t) is
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generated using random noise generators or random number genera-
tors and is added to s(t), thus forming s(t) + n(rt . The filter
is applied to s(t) + n(t), yielding the filtered process 9(t).
The original signal process s(t) is fed into a comparator with
apprrr iate delay to form the difference process s(t) - s(t)
which i3n be evaluated for the performance of the tilter.

NOISE
GENERATOR

n(t)

SIGNAL SUM FILTER
PRFiCESS

s(t) s(t) + n(t) s(t)

COMPARATOR
DELA'i _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _

s(t) - s(t)

Figure 2-3. A closed loop simulation logical diagram.

2.6 Monte Carlo Methods

An analogy of the random numbers used in digital simulations
to the random outcomes of gambl ing devices such as roulette,
dice, and cards has led to the use of the celebrated term "Monte
Carlo" since the inception of digital simulations. The simula-
tion of a random process by random numbers, followed by the
calculation of statistical parameters of the end result of this
piocess, is called a Monte Carlo technique. The random numbers
in question can be generated by a computer. In the digital
simulations of s(I) i n(i), =1..., m, the signal process s(i)
is assumed to be known a priori and is available in the computer
storage. The noise process n(i) is frequently assumed, unless
4acts to the contrary are known, to be independently and identi-
rally dittributed random variables for all i=l,.. , m with a
• iven proaoaoility distrioution function. The proolem then
..edu(.es to the yeneration of random numbers with these qualifica-
t i ons.
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2.S.1 Generation of Random Numbers From a General Distribution
Function

Suppose fx(k): k = 1..., 1, are random numbers generated
with a probability density function f(x), where f(x) can be
either discrete or continuous in x. Basic concepts for the
descrete and continuous cases are described in the following
subparagraphs.

2.6.1.1 Definition of Olcrete Case

If f(x) is discrete, it is then described as P{X = x), where
x is a discrete random variable (r.v.). There exists a probabil-
ity value f(x(j)) for each random number x(J), j = 1, 2,..., =
such that

f(x(j))> 0, j = 1, 2,... (2-9)

and
al

E f(x(j)) = 1 (2-10)
j=1

The cumulative probability F(x(n)) is defined to be

n
F(x(n)) = f(x(i)) (2-11)

It is the probability that the random variable X equals any one
of the random numbers x(1), x(2),..., x(n). Notice that

1rM F(x(n)) = 1.
n - > o

2.6.1.2 Method of Random Number Generation

In the case of f(x) being continuous in x over the range of
interest [a,b], f(x) is then described as having these three
properties

f(x) > 0 for all x in [a,b] (2-12)

b

f f(x)dx = 1 (2-13)

a

d

S f(x) dx = Plc<X<d},

c
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where X is a continuous r.v. and (c,d] is contained in c fa,b].
The cumulative distribution function F t) is defined to be

t

F(t) = f f(x) dx, a < t < b (2-14)

a

Obviously, F(a) = 0, and F(b) = 1. (2-15)

2.6.1.3 Method or Random Number Generation

Let y(k), k=1,..., n, be random numbers uniformly distribut-
ed between 0 and 1. Random numbers x(k) can be generated from
y(k) by finding a cumulative distribution function F mapping x to
y. so thar

y(k) = F(x(k)). (2-16)

Pick F so that the new random numbers x(k) will be distributed in

the manner desired. Now generate the new random numbers by using

x(k) = F- (y(k)). (2-17)

In this manner, it is assured that the source y(k) of the new
random numbers x(k) is random and uniformly distributed. The
uniqueness of x(k) and the inverse mapping F-/y(k) can be seen
irrimediateIy from figure 2-4. Equation (2-17) is applied often,
since raiidom number generators of many compilers produce numbers
uniformly distributed between 0 and 1. The problem then narrows
down to the generation of the random numbers y(k) from a uniform
distribution over (0,11.

2.6.2 Random Numbers From a Uniform Distribution

ComPuters have mathematical routines which generate uniform-
ly distr buted random numbers. Various different earlier pseudo-
random number generators have been examined in H. A. Meyer,
"ymposium on Monte Carlo Methods, John Wiley, New York, 1956.

One technique called the "congruence method" uses the
followinQ scheme. Given an initial random number x(k),
O<x(k)<2h-1, x(k+l) is computed recursively by

, (K+1) = (x(k) [1+2 a] + 1) (mod 2n ) (2-18)

where a = (n/2] (P ] is the greatest integer function). This
techniquf- is frequently used to generate random numbers in an
,-.-bit bir3ry machine.
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2.0.3 Rancom Normal Deviate

Another kind of random number ofter, used in digital simula-
tion is that of the random normal deviates. A random normal
deviate Is a number in a set of random numbers that Is normally
distributed. Random normal deviates are used to simulate a
random sample from a standard normal distribution. These random
numbers can be generated using the mapping technique described In
subparagraph 2.6.1 with the probability density function

f(x) = (2n) - 1 / 2  exp(-x 2/2). (2-19)

x(n)

y(k)

,l
,l

0 
Xk=Xm

x0  x1 x2 (m-1) x(m) x(m+1)

F(x)

y(k)

0
x(k) x

Figure 2-4. Graphic description of how the random number

x(k) is determined. It is obtained with a
cumulative distribution function F(x(n)) (in
top graph) or F(x) (in bottom graph) and a
random variable y(k) uniformly distributed
over (0,13.
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The resultant random numbers possess zero mean and unit variance.
For the generation of random numbers z(k), k = I..., N, with a
(nonstandard) normal distribution with mean m and variance v, use
the transformation

z(k) = m + v(x(k)), k 1 ,..., N. (2-20)

2.7 Residuals

Some filter characteristics may be determined from using
real test data by analyzing the residuals about the fit, that is,
the differences between the filtered data values and the nonfilt-
ered data values. A statistical analysis may be made for the
autocorrelation and for the amount of variance or standard
deviation. In addition, if the residual distribution includes a
randomness about zero, this randomness is a good indication that
the systematic error because of improper filtering is small. If
these residuals do not display this randomness about zero, then
the filter may be introducing bias or systematic error. The
feature of randomness, however, in the residual analysis is only
for the case when the noise is uncorrelated. Often the noise is
correlated Then the residual analysis becomes more complicated
and must be undertaken with caution. Spectral analysis may be
performed on the residuals as defined in RCC Document 153-71,
Error Analysis and Methods For Estimating Errors in Position,
Velocity. and Acceleration Data.
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CHAPTER 3

FILTER ANALYSIS AND DESIGN IN THE FREQUENCY DOMAIN

3.1 Analysis of Filter Characteristics in the Time Domain

In the previous chapter, the analysis of filter characteris-
tics in the time domain was consijered. Also of interest are the
characteristics of the filter in the frequency domain. To cite
an instance, it may be necessary to know how the filter treats
different frequencies which might be present in the data being
filtered, Probably the most useful tool in any kind of analysis
in the frequency domain is the Fourier transform as defined by

X(f) = j expt-2nift)x(t)dt (3-1)

Here x(t) is some function of time, f is frequency, and i -1.
The function X(f), the Fourier transform of x(t), gives an
indication of how different frequencies are distributed in the
function ×(t). To transfer from the frequency domain to the time
domain, use the inverse Fourier transform, given by

00

X(t) = j exp(12ntf)X(f)df (3-2)

A(f) and x(t) are known as Fourier transform pairs.

3,2 Discrete Fourier Transform

Because the digital computer requires that input data be in
sampled form, it is often more apppropriate to use the discrete
version of the Fourier transform given by

00

A(i) = t E expt-2nifj)x(j) (3-3)

where t is the time increment at which samples are taken. The
variable t is sometimes referred to as the sampling period. Its
reciprocai is sometimes referred to as the sampling frequency or
sampling rate. The function X(f) is known as the discrete
Fourier transform (OFT) of x(t). For a finite seauence

x(O), x(1)...... x(N-1) (3-4)
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the discrete Fourier transform is given by the seQuence

N- I
X(K) E exp(-2nikj/N).t(x(j)) k=O, 1..., N-I (3-5)

*1=0

The inverse discrete Fourier transform is given by

N-I
xij) * (1/N) E exp(-2Tikj/N)*t(x(j)) k=O, 1...., N-I (3-6)

.1=0

An efficient algorithm, developed by J. W. TuKey and J. W.
Cooley )ublished in 1965 and commonly used to calculate the
discrete Fourier transform, is the Fast Fourier Transform (FFT).
(A paper by I. J. Good a decade earlier describes a very similar
algorithm.) Essentially, the FFT splits the sequence into two
subsequences with each containing every other element of the
originai sequence, computes the discrete Fourier transforms (DFT)
of those sequences, and rearranges the values of their DFTs back
in their proper order to form the DFT of the original sequence.
In this manner, the DFT can then be computed by using fewer com-
piex operations (multiplications and additions).

Normally, the subsequences are divided again in the same
manner as, the original sequence to further reduce the number of
operation,; required to compute the DFT of the original sequence.
The subsequenues are divided still further until there are only
one-element sequences. When this subdividing has been completed,
the ratic of the number of operations used for the FFT compared
to the number of operations used to calculate the DFT directly is

Iog 2 N (3-7)

N

where N is the order (length) of the original sequence.

It is often desirable that the original sequence have an
order equal to a power of two, so it can be divided in the manner
described earlier. In the event that the original sequence is
not of such order, the sequence is often padded with zeroes, so
that it can be completely reduced. The extra space used for
padding the sequence with zeroes is more than compensated for by
the savings afforded by the algorithm. Table 3-1 and figure 3-1
(obtainei from references 47 and 53) demonstrate the difference
between the number of multiplications used when calculating the
DFT direutly and that used when applying the FFT. See reference
52 for a brief and clear explanation of the Fast F-ourier Trans-

form.
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TABLE 3-1. COMPARISON OF REQUIRED MULTIPLICATION OPERATIONS
USING THE FFT AND THE DIRECT DFT.

N N2 (direct DFT) 2N 1092 (FFT)

64 4,096 768
128 16,384 1,792
256 65,536 4,096
512 262,144 9,216

1,024 1,048.576 20.480

Oe!t C Lcut; ...

IOSI4 ---124

-7

0

-3-

!256 -- -_ _ _ _

z
128 F FT A9lhonww

64 
- - A

54 128 156 $12 1024

Figure 3-1. Comparison of multiplications required by
* direct calculation and FFT algorithm.
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Another useful tool in the analysis of a filterS frequency
characteristics is the power spectral density function (psd) or

power spectrum. This function's name came from a widely used
term in the field of electrical engineering where it gives
distrtbution ot the signal power for each frequencv. In this
case, the power spectrum is measured in terms of watts per Mertz.
(In eletrical engineering, the Fourier transform as a function
of time is measured in hertz. Hertz is cycles per second.) rhe
power spectral density function is the Fourier transform of the
autocorrelation function, which is defined in chapter 2. In the
slatit cal sense, it indica:es how the variance is distributed
as a function of frequency. For the discrete case. the power
spectral density function of lx(j)l is given by tree following sum

GX(f) = £ exp(-2Yxif(j)).t(R(j)) (3-8)
=-0

where R(j). the autocorrelation function, is given by

R(j) = x(i)x(i-j) (3-9)

One of the best ways analyzing a filter's frequency
properties is to look at the frequency content of the output when
the input is white noise. As mentioned in chapter 1, the power
spectral density of white noise is a constant for all frequen-
cies. Thus, by taking the power spectral density of the output
of a filter whose input is white noise, it can be determined how
the t ilter treats all the frequencies in the data. For example,
it might be desired that the filter might pass frequencies in a
band fl < f'f2 while rejecting all frequencies outside that band.
Then, if the input is white noise, the ideal power spectral
density if the output would be a translated rectangle as shown in
the figure 3-2. In other words, if the psd of the output is that
shown in the figure 3-2, then the appropriate frequencies (those
loss than f, or greater than f2) were filtered out.

X

fi f 2  f

Figure 3-2. Power spectrum of output, where the input is
white noise and where the filtet passes only
the frequencies between f, and r2 .
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An indication of how good the filter is can be seen by comparing
the power spectral density of the filter output, when the input
is white noise, to this ideal ized power spectral density.

3.3 Tansfer Funotlon of Filter

In chapter 1, it was noted that the output of a filter
equals the input convolved with the filter weighting function. A
convolution for a time-invariant system takes the form

00

y(t) = J h(T)x(t-T) dT (3-10)

where h(T) is the weighting function.

By taking the Fourier transform of the above equation, the
equation becomes

Y(f) = H(f)X(f) (3-11)

The Fourier transform of the weighting function, H(f), is known
as the transfer function of the filter and represents the ratio
of the filter output to the filter input in the frequency domain.

Repeating equat;on (1-18), the equation for a qonrecursive, time-
invariant digital filter is

y(J) E h(K)x(j-k) (3-12)

k

The transfer function H(f) for this filter is given by

H(t) =E h(k)exp(-2nifk).At (3-13)
k

Likewise. we repeat equation (1-19), the equation for a recursive
time-invariant digital filter:

N M
y(j) E a(k)x(j-k) + I b(k)y(j-k) (3-14)

k=O k=I
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The transter function H(f) for this filter is given by

N
E a(k)exp(-2nifk)

k 0
H(f) = . ........ (3-15)

M
1 + E b(k)exp(-2yi fk)

k= I

The modulus of the transfer function is called the gain of the
tilter and represents the amplification of the input.

Filters can be categorized according to the characteristics
of their transfer functions. A filter is called an ideal low-
pass filter if

H 1 for 0 < I f J < f,( 1I H(f) I = -- (3-16)
0 for fc < I f I

The plot of I H(f) I is as shown in figure 3-3.

I H(f) I

f fcf

Figure 3-3. Ideal low-pass filter.

A filter is called an ideal high-pass filter if the transfer
function is given by

0 for 0 < I f I H ( )I H ( f ) i = -- ( - 7

1 fcr fH < I f I

and the plot of I H(f) I ii, as shown in figure 3-4.
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I H M(I:

fH0 f Hf

Figure 3-4. Ideal high-pass filter.

A filter is called an ideal band-pass filter if

o for 0 1 f < fH

HMf 1 for H < f (3-f8L

o for fL < f I
and the plot is as shown in figure 3-5.

I HMfI

Figure 3-5. Ideal band-pass filtetr.
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These ideal filters cannot be attained because there is, in
practice, a finite number of samples. The impulse response in
equation (3-10) is multiplied by a "boxcar" or window function
which covers the time interval being sampled. Alternatively, the
limits of integration can be changed to the appropriate, finite
time limits. An stated in paragraph 1.5, the transform of the
product of two functions Is the convolution of the transforms of
the two functions. Now the transform of the boxcar function is a
sinc function. (By definition, sinc x = sin (nx)/nx.) The
resulting transfer function is the slnc function convolved with
the transfer function of an ideal filter. The graph of the
resulting gain is a boxcar function with ripples and not the
ideal boxcar function illustrated In this section.

Methods for simulating the ideal low-pass filter are given
in chapter 5. High-pass, band-pass, and band-rejection filters
(discussed in chapter 4) are normally derived by first designing
a low-pass filter. Methods for obtaining all of these filters
are given in chapter 4.

3.4 Cutoff Frequenoy Roll-Offt and Quality of Filter

In the previous section, a low-pass filter was defined in
terms of a frequency denoted as fc" This frequency fc is called
the cutoff frequency (see equation 3-16). The cutoff frequency
is used as a criterion for designing digital filters in the
frequency domain. It also gives a standard for analyzing the
performance of filters in the frequency domain.

As explained in paragraph 3.3, ideal filters are simulated
and not used directly. The simulating filters do not have gains
that look like the boxcar functions drawn in paragraph 3.3. The
gain of a simulating fi'ter does not suddenly drop off from 1 to
0 the way the gain of an Ideal filter does. Instead, it normally
starts off (at f=O) with a value that is within a predetermined
tolerance 61 of 1 and tapers off to within a predetermined oler-
ance 62 of 0.

The band of frequencies in which the gain is between 1-61
and 1+61 is called the passband. The greatest frequency value in
the passband is the cutoff frequency for the passband. The band
of frequencies in which the gain is <62 is called the stopband.
The lowest frequency value for the stopband Is the cutoff fre-
quency for the stopband. The band in which the gain is < 1-81
and > 82 is called the transition band. These items are illus-
trated in figure 3-6, which is obtained from reference 55.

One commonly used simulation to the ideal low-pass filter
that is not designed on the basis of a transition band and two
cutoff frequencies is the Butterworth filter. This filter and
other simulations are given and explained in chapter 5.
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lH(eiw)l

o - lowipass ft

PTss btnd i Trons it ion S opbtnd
I I

function of uaigoideal)ps filter.(e aagah33

approaches the 90* slope of the transfer function of the ideal
filter. Roll-off is related to the intuitive notion of "sharp-
ness" of the cutoff. This quantity is defined as

-f dIHI
p =- (3-19)

H df

A value for p can be obtained at any frequency desired. For
purposes of comparison and analysis of filters, this quantity is
often calculated at 1 H I = 1/ 2 In figure 3-7, the plots of
IHMf)I for two filters, A and B, which approximate the ideal
low-pass filter are given. Both filters have the same cutoff
frequency, but A has a higher rolloff than B.
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fcf

Figure 3-7. Comparison of rolloffs for filters A and B.

A third concept used in analyzing low-pass filters in the
frequency domain is quality, which is defined as the extent to
which the filter attenuates frequencies well above the cutoff
frequency. (An attenuating function In the frequency domain is
one that approaches zero as the frequency increases.) There is
no standard mathematical definition for quality, so some subjec-
tive judgment must be used to determine the quality of a filter.
One tool that can be used in making this judgment would be the
power spectral density function as discussed in paragraph 3.2.
For example, if two filters, A and B, yield the power spectral
density functions shown in figure 3-8, then it might be concluded
that filter A has the better quality.

G(f)

B

A

Figure 3-8. Comparison of the quality of filter A

with the quality of filter B.
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3.5 Phase Shift of Filter

The transfer function H(f) of a filter is generally a
complex number and can be expressed as

H(f) = I H(f) I exp(iO(f)) (3-20)

0(f) is called the phase snift of the filter. Alternate names
are phase response and phase angle. A time shift in the time
domain corresponds to a phase shift in the frequency domain.

Equation (3-20) can be expressed as

H(f) = I H(f) I cos(e(f)) + i H(f) sin(e(f)) (3-21)

or

H(f) = Re(H(f)) + i•im(H(f)) (3-22)

where

Re(H(f)) =I H(f) I cos(e(f) and lm(H(f)) = I H(f) I sin
(E(f)). Re and Im denote real and imaginary parts of a complex
number.

Now lm(H(f)) = tan(8(f)) (3-23)

Re(H(f))

The phase shift of the filter is then

(f) = arctan lm(H(f)) (3-24)
Re(H(f))

The output of the filter Is in phase with the input only if
lm(H(f)) = 0. In most applications, this phase shift is impor-
tant, and the analyst should be aware of its magnitude.

3.8 Construction of Filter Weights

Again consider a linear, nonrecursive digital filter whose
defining equation is

M
y(k) I h(j)x(k-j) (3-25)

j=o

In this section, a general discussion of the way the {h(j)l are
determined will be given so that the filter will have a desired
frequency response function. The frequency response is the same
as the transfer finction except that it is applied to a specific
class of inputs in the form
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x(n) = exD(12Ytfn). (3-26)

One way of approaching this problem is to assume a desired
frequency response function, H(), then take the :nverse Fourier
transtorm to get h(t) as shown in equation (3-27). The variable
4 is the angular frequency and is equal to 2nf.

h(t) = 1 Jexp(i ( t)H() d Q (3-27)

The weights for the discrete filter are then determined by
evaluating this continuous weighting function at soecific in-
stants in time,

hn = h(tn)At. (3-28)

There are problems with constructing these weights if the ideal
frequency response is used. For example, the ideal frequency
response for the low-pass filter is the unit rectangle as given
in figure 3-3. The inverse Fourier transform must be truncated
in the applied case, so only a finite number of weights are used
in equation (3-25). The truncated Fourier transform of the unit
rectangle is very "bumpy" (see paragraph 3.3, page 3-7) because
of the discontinuity at fc and is not useful in most applica-
tions.

Approaches to avoiding this dilemma are given in references
7, 11, and 13. In reference 7, Gennery eliminates the dilema by
using various modifications of the Gaussian distribution function
for the ideal response function. In reference 11, Ormsby replac-
es the ideal frequency response function with a function having a
finite slope. In reference 13, Stirton multiplies the h(t) for
the ideal filter by certain "apodizing" functions which eliminate
the bumps in the frequency response function.

In certain applications, the z-transform rather than the
Fourier transform is used for designing filters in the frequency
domain. The z in the z-transform is often used as a replacement
for the exponential function in the discrete Fourier transform
(DFT). It is used as such for computational ease and to facili-
tate transfer function analysis. For example, it is easier to
determine stability of a filter by looking at the z-transform
rather than by looking at the DFT. Determining filter stability
in this manner will be discussed again in paragraph 3.8 and in
chapter 5.

The z-transform approach is used when the transfer function
of an analog filter is known, and when construction of a digital
tilter having that same transfer function is desired. The
z-transform of an analog function f(t) is defined as
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(f(t)) E f(nT)z' (3-29)
n=O

It can be shown that the z-transform of the weighting function is
the ratio of two polynomials in the form

N
E a(n)z i 3

n=O
H(z) =

M
1 + E b(n)z

i

n=1

if the filtered output (y(k)) is given by the recursive relation

N M
y(k) I a(n)x(k-n) + E b(n)y(k-n) (3-31)

n=O n=1

It can also be shown that the z-transform of the weighting
function is in the form

N
H(z) = £ a(n)z i  (3-32)

n=O

if the filtered output {y(k)) is given by the nonrecursive
re I at ion

N
y(k) = s (n)x(k-n) (3-33)

n=O

Other ways in which H(z) can be expressed are discussed in
chapter 5.

3.7 Aliasing

In performing with digital filters, samples are taken from
an analog sinusoidal waveform, and the waveform is reconstructed
from the samples. The samples are typically taken at equal-
spaced time intervals. The problem arises about how short these
sampling intervals should be so that the original analog waveform
can be exactly reconstructed. If the sampling intervals are too
large, that is, if the samples are too infrequent, the original
analog waveform may be reconstructed to have a sower frequency
than it actually has. This misrepresentation of a frequency by a
lower trequency is known as aliasing.
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The appearance of wheel spokes turning slower than they
actually are is an example of aliasing. The alternate term
"foldover" can be expressed by the next example. Suppose an
observer is taking visual samples at a constant time rate of the
fast-turning wheel spokes. As the wheel's rotational speed
increases, the wheel spokes seem to be rotating faster up to a
certain point. Then the wheel spokes appear to slow down until
they seemingly rotate faster and faster in the backward direction
up to a certain point. The spokes then seemingly slow down until
it looks as though they are going in a forward direction. If the
observed rotational motion is placed on a plot of observed
frequency versus actual frequency, the graph "folds over" at a
frequency value known as the Nyquist or folding frequency (see
figure 3-9). The Fo axis represents the observed frequency while
the fa axis represents the actual frequency, and the value fN is
the Nyquist frequency.

fa

,"=... fo
f N 0 f

Figure 3-9. Foldover or aliasing resulting from observing
a wheel's increasing rotational speed.

3.7.1 Aliasina In the Time Domain

An illustration of aliasing in the time domain is given in
figure 3-10. The original analog waveform is the thinner sinu-
soid and is sampled at the points shown. With these sampled
points, the original waveform is reconstructed so that the result
is the thicker line which, of course, has a lower frequency than
the original waveform. In producing new waveform, the original
one was misreconstructed because the samples were taken too
Infrequently (see figure 3-10).
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SAMPLED
POINNT

POINT POW

Figure 3-10. Aliasing in the time domain.

More often than not, the original waveform represents the
sum of many sine and cosine functions. Figure 3-11, obtained
from reference 62, illustrates this notion. The bottom sinusoid
is the sum of the top three sinusoids. The frequency of each of
the top three sinusoids is called a "frequency component" of the
bottom sinusoid.

C1

(0)

Figure 3-11. Bottom sinusoid shown as the -sum of three

frequency components, C2, Cl. and S1.
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3.7.2 AlIaIng In the Preuenoy Domain

The discrete Fourier transform of a signal car) be expressed

in terms of the analog Fourier transform by

X(e T ) = (1/T) I X A( + (2n/T)m) (3-34)

M= -OD

where XA() (in the right-hand side) is the analog Fourier trans-
form, ,nd X() (in the left-hand side) is the discrete Fourier
transform. This equation is derived in reference 55.

The frequency interval of each term in the surmation sign of
equation (3-34) will not intersect with its adjacent interval if
it is at most 2Yz/T wide. Figure 3-12, obtained from Reference
54, point to this fact. Figure 3-12 illustrates the analog
Fourier transform of one of the terms, which covers a frequency
bandwidth of 2n/T and illustrates the infinite sum of such terms.
As can be seen, 2n/T is the widest that these terms can be
without intersecting each other.

XA(il) 1o)

-,77. 0 77. £
T T

X(e iwT) (b)

517. 37 7 0 7 3r" 577
T -Y- -"Y Tf T"

Figure 3-12. Sampling relations for analog and digital

systems for properly sampled irir:uts.
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Figure 3-13, obtained from reference 54, gives an example
where samples are taken too infrequently, in particular, where
they are taken at a rate of w/3n, which is less than w/2n. In
other words, the frequency bandwidth for each term, which is
3n/T, is greater than 2n/T. Figure 3-13a shows the graph of one
of the terms in the summation of equation (3-34), when substitut-
ing 3n/T for w. Figure 3-13b explains how the adjacent terms
overlap each other, and figure 3-12c displays the resulting graph
of the Fourier transform. It is easily seen how the frequency
3n/2T can be mistaken for the frequency n/2T. This phenomenon,
where in effect a frequency component takes on the identity of a
lower frequency, is aliasing or foldover.

X411 I

3r 0 3W
ZT ZT

X(e Iwt)

(b)

r 0 r 0T "T T T

(c)

0

Figure 3-13. The effects of undersampling on the digital

frequency response.

3.7.3 Swapling Theorem end the Nyqulat Frequency

The Sampling Theorem offers a way to avoid aliasing. It
states that if the Fourier transform of a signal is bandlimited,
then the original signal can be exactly reconstructed if samples
are taken at a frequency of at least twice that of the highest
frequency component in the signal. In mathematical terms, the
Sampling Theorem states if F(U), the Fourier transform of a
periodic time function f(t), is bandlimited so that

F(W) = 0 for I a c (Oc = 2nf c)  (3-35)
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then f(t) can be uniquely determined if it is sampled at inter-
vals no greater than 1/2f,= n/e c , that is, at a sampling rate of
no less than 2fc = 0/7.

Figures 3-11 and 3-12 imply the validity of this theorem.
From these figures, it can be seen that the frequency oc should
be at most n/T to avoid foldove-. In other words, the sampling
rate 1/T should be no less than vc/n.

For samples fn which equals f(tn), where tn < n/ 2 fc = ni/ c o
then the original analog signal f(t) can be reproduced by

f(t) = fn sin(ot - nn) (3-36)

n=-w an t - nn

2f o is known as the Nyquist or folding frequency. (This theorem
is stated and elegantly proven in subparagraph 9.1.1 of reference
47.)

3.8 Stablilty of Filter

A digital filter is stable if every bounded input sequence
yields a bounded output sequence through this filter. A sequence
is bounded if all its terms are less than a specific positive
integer. It can be shown that a necessary and sufficient condi-
tion for stability is that the impulse response I h(k) I be such
that

I I h W) I < *D (3-37)

From this condition, it can be shown that another indication of
filter stability is that all the poles of the transfer function
be inside the unit circle in the (complex) z plane. If poles are
on the unit circle, then the filter may or may not be stable. if
a pole is outside the unit circle, the filter is not stable. See
chapter 5 for the relation between pole location and filter
stability.
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CHAPTER 4

CATEGORIES OF DIGITAL FILTERS

In Chapter 1, some of the fundamental principles of digital
filters were discussed. As stated earlier, the basic reason for
using a digital filter is to separate or suppress errors and to
pass signals without significant distortion. As discussed in
Chapter 3, the frequency response of the filter should be such
that those frequencies consisting mainly of the desired signal
should be passed through the filter, and those frequencies
consisting mainly of noise (error) should be rejected. If the
complete statistical characteristics of the signal and noise are
known, then using the principles discussed in chapter 3, a filter
can be constructed to separate signal from noise in an optimum
manner.

1 Low-Pass Digital Filters

The data from missile trajectory work usually contains a
signal which consists mainly of large low-frequency components.
The noise error is usually assumed distributed throughout the
frequency spectrum with the desired signal being much greater in
amplitude than the noise at low frequencies but smaller than the
amplitude of the noise at the high frequencies. In this case, a
low-pass filter Is designed to pass the desired signal.

A low-pass filter has a frequency response of exact unity at
zero frequency, approximate unity at low frequencies, and approx-
imately zero at higher frequencies (see figure 4-1). The low-
pass filter Is simulated by the ideal low-pass filter defined in
paragraph 3.3). TI. frequency at which the transition occurs
between the high an6 low frequencies Is called the cutoff fre-
quency (fc) of the filter. Because a low-pass filter removes the
high frequency fluctuations from the data, it is often referred
to as smoothing the data.
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I H(ff filter gain

1.0

___f (frequency)

fc

Figure 4-1. Typical frequency response Lt 'low-pass
filter (represented by the curved line).

4.2 High-Pass Digital Filters

The category of low-pass filters discussed in the previous
section can be transformed into filters which perform other
tasks. In analysis work, one of the most commonly used is the
high-pass filter. As the name implies, a high-pass filter is
designed to pass high frequencies and reject the low frequencies.
A low-pass filter can be transformed into a high-pass filter in
several conceptually equivalent ways. One of the most common
ways is to subtract its frequency response from unity at all
frequencies. That is, if HL(f) is the frequency response of a
low-pass filter, then

HH(f) = 1 - HL(f) (4-1)

defines the frequency response of a high-pass filter.

Since

HL(O) = 1 (4-2)

fcr a low-pass filter, then it follows that

HH(O) = 0 (4-3)

Equation (4-1) shows that output from a high-pass filter is
the same as the difference between the unfiltered data, that is,
output from an "all-pass" filter and the output from a low-pass
filter, Clearly, since a filter whose response is unity over all
frequency bands, an all-pass filter passes the data without
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change; that is, it does not filter the data at all. Therefore,

the effects of a high-pass filter can be duplicated by filtering

the raw data with a low-pass filter and then subtracting the

results from the raw data as in

Y = HHX = (I-HL)X = X - HLX (4-4)

X is the raw data (in the frequency domain). HLX is the low-pass

filtered data. This technique Is often used in analysis of high-

frequency noise on missile trajectory data; however, the proce-
dure of subtracting the low-pass or smoothed data from the raw

data can be cumbersome and time consuming. A generally faster
approach is to construct the weights of the high-pass filter and

apply them directly to the raw data.

The weights for this high-pass filter can be obtained by

taking the difference between the weights for the two filters

given by the right-hand side of equation (4-1). Remember from
paragraph 2.3 that these weights amount to the unit impulse
responses of their respective filters. For an all-pass filter,
the response to a unit Impulse Is a unit impulse, because the
input data is left unchangerd by this filter. Consequently, all

the weights of an all-pa f'Iter are unit impulse responses.
The weights for the low-pass filter are then subtracted from the

weights of the all-pass filter to obtain the weights for the
high-pass filter. Letting WLk represent the weights for a
low-pass filter and WH k represent the weights for the corre-
sponding high-pass filter, then

WHk = 8k - WL,k (4-5)

where

1 if k = 0 (4-6)
ak=

0 if k 0 0.

4.3 Band-Pass Filters

The band-pass filter passes a set of adjacent frequencies

while rejecting the frequencies above and below the set of
frequencies. A band-pass filter is said to be narrow if the
frequency band contains very few frequencies, and wide if it
contains many frequencies. If the desired frequency bandwidth is
large compared to the center frequency of the band, a wide

band-pass filter would be desirable to use for filtering the
band. If the bandwidth is small compared to the center frequen-

cy, it would be better to filter it with a narrow band-pass
f I I ter.
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The wide band-pass filter is constructed by combining a
high-pass filter with a low-pass filter. The high-pass filter,
used for this construction, has a cutoff frequency f. in the area
of the spectrum where the low-pass frequency response is approxi-
mately unity. The low-pass filter that Is used has a cutoff
frequency f. where the frequency response of the high-pass

H
filter is approximately unity. There is a resulting band of
frequencies where the low-pass and high-pass filters are both
unity, so that fc > fc The frequency response of the

L H
re-ulting filter would have a low end of f. , a high end of

H
fc and a center frequency of

L

fc + f c (see figure 4-2#. (4-7)
fo =  L H

2

IH(f) I filter gain

frequency
0 fc fo fc

H L

Figure 4-2. Frequency response of wide band-pass filter.

To perform the band-pass filtering, the high-pass and
low-pass filters can be applied separately to the data in series,
which is usually time consuming. It is more desirable to combine
the two filters into a single band-pass filter by convolving the
weights of the two filters with the input data in the time
domain. The same results can be obtained by multiplying the
frequency response of each filter with the Fourier transform of
the input data in the frequency domain and then taking the
inverse Fourier Transform to get the band-pass filtered data in
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the time domain. The methods mentioned here are essentially the
same as the methods described in paragraph 4.2 for converting a
low-pass filter into a high-pass filter.

If the frequency response curves of the high-pass and
low-pass filters are sharp and ciosely approximate the ideal
frequency response of a step function, the techniques discussed
previously will work for a narrow band-pass filter, If this is
not the case and the roll-off is not steep, a narrow band-pass
filter can be constructed using the following technique. The
frequency response of a low-pass filter is translated so that the
center frequency of the low-pass filter, f=O, is moved to the
desired center frequency of the passband with its own mirror
image reflected about the zero frequency, thus its mirror image
is at the corresponding negative frequencies (see figure 4-3).

FIRST STEP: Design the SECOND STEP: Translate so
approximate that the new
low-pass filter, center fre-

quency is fd
and reflect
about the line
f=O.

1 2

0 -fd 0 fd

Desired passband
center frequency

Figure 4-3. Method of converting a low-pass filter with
shallow roll-off into a band-pass filter.

4.4 Band-Rejeotion Filters

To remove a particular band of frequencies from the data
and, at the same time, to preserve the lower and higher frequen-
cies, a band-rejection filter can be constructed. The band-
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rejection filter is the opposite of the band-pass filter. Tnere
are various methods of constructing a band-rejection filter from

a band-pass filter. Each method Is analogous to an approach
discussed in paragraph 4.2 In obtaining a high-pass filter from a
low-pass filter.

The frequency response of the band-rejection filter can be
obtained by subtracting the band-pass response from unity as
shown in figure 4-4. In the time domain, the band-rejection
results can be obtained by band-pass filtering and then subtract-
ing the band pass-filter results from the raw data.

Another approach is to construct band-rejection weights and
then filter the data directly In a one-step operation. The
weights are constructed by

WR,k = Sk - WB,k  (4-8)

where

WBk are the band-pass weights (4-9)

and

6I I if k = 0 (4-10)

0 if k 1 0

Filtering can be accomplished by convolving the weights of the
band-rejection filter with the input data to obtain the filter.

IH(f) 1, filter gain

- )0 frequency
0 fc fo fc N

L H

Figure 4-4. Frequency response of band-rejection filter.
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4.6 Phase-Shift Filters

All categories of digital filters have a phase-shift curve
which characterizes the amount of phase shift the filter !nduces
for each frequency. It is sometimes desirable to construct a
filter which will shift the phase of a signal by a constant
amount over a narrow band of frequencies while maintaining
constant amplitude. For example, a sinusoidal signal with
amplitude s and phase 0 can be resolved into two components with
amplitude - cos 0 and phase 0 and amplitudeac sin o and phase
90 ° . In this case, a filter is constructed which produces a
phase shift of 9W and combines the output of the filter with the
unshifted data in the appropriate manner to produce any desired
resultant phase shift. A phase lead of 900 and no amplitude
change corresponds to frequency response equal to 1-Tl. An ideal
digital-phase shifter maintains this value for all frequencies
between zero and the Nyquist frequency.

4.6 Filter Combinations

Any or all of the filters discussed in this chapter can be
combined to form filters which perform more complex tasks. In
any case, whatever effects are wanted can be accomplished in the
time domain by applying the filters independently in series or by
getting a one-step complex filter by convolving the filter
weights together in the time domain. On the other hand in the
frequency domain, the frequency response curves can be multi-
plied, added, or subtracted to give whatever response is desired,
then transformed to the time domain via the appropriate use of
the inverse Fourier transformation.

One special combination filter is referred to as a "comb
filter." This filter consists of a series of n narrow band-pass
filters having a frequency response curve with n narrow frequency
bands at equal spaces between zero and the Nyquist frequency,
which was discussed in subparagraph 3.7.3. This type of filter
is constructed by convolving the raw data with the weights of n
narrow band-pass filters thet can be accomplished in a one-step
operation. (A similar one-step operation is discussed in para-
graph 4.4, in converting a band-pass filter into a band-rejection
filter,.) The filter is then usually used to aid in determining
significant frequencies and cut-off levels for other low-pass or
high-pass filters. The Fast Fourier Transform is usually consid-
ered a better tool for this analysis than the comb filter.
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CHAPTER 6

FREQUENCY DOMAIN FILTER DESIGN

There have been many filters developed for digital signal
processing in the frequency domain and various ways to express
these filters. In this chapter, a synopsis of trie filters is
given along with their various modes of expression. For recurs-
ive filters, methods of conversion from the anaiog form to the
digital form are given as well. Also discussed are the advantag-
es and disadvantages of using each type of filter, mode of
expression, and method of conversion. Since the approach to
designing infinite impulse response (IIR) (recursive) and finite
impulse response (FIR) (nonrecursive) filters, described earlier
in this document, ate completely different, the chapter is
divided into two parts: IIR and FIR filter design.

5.1 Infinite Impulse Responme (IIR) Filter Design

The IIR filters have been extensively analyzed in the analog
form. Consequently, digital IIR filters are usually described
first in analog form and then converted to digital form.

The problem of approximating an IIR filter involves a
complex transfer function of the frequency (. The transfer
function can be written as

H(z) = I H(z) I eIB( z ) (5-I)

where z=e and B(z)=B(e'O) is the phase angle, which can be
defined as

Im(H(e'i))
B(e'() arc tan (5-2)

Re(H(e i'))

Thus both the magnitude and the phase angle (also called the
phase response) are examined to determine the nature of the
filter approximations.

Advantages to using an IIR filter are that it (1) can be
expressed in closed form and thus can general ly be computed more
efficiently, (2) does not require powerful computational facili-
ties to be calculated, and (3) achieves a superior amplitude
response. An undesirable consequence of using an iIR filter is
that it yields a nonlinear phase response. More on the Iinear
phase characteristic is covered in paragraph 5.2.
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5.1.1 Modes of 11R Filter Expression

Recall from chapter 3 that an IIR filter car, bp expressed as

N M
y(k) I a(i) x(k-i) + E b(i) y(k-I) (5-3)

i=0 1=1

Three popular modes of expression for the transfer function of an
IIR filter are

(1) the direct form,

(2) the cascade form, and

(3) the parallel form.

The forms assume those names because when they are illus-
trated in network diagrams, they are depicted in the forms
mentioned. In the following subparagraphs, the mathematical
forrs and illustrations are given as well as the advantages and
aisadvantages.

5.1.1.1 Direct Form

As mentioned in paragraph 3.6, the z-transform of a weighing
function, that is, the transfer function of an IIR filter can be
written as

M
bkz-k

k=O
H(z) = (5-4)

N
1 - ~ akzk

k=O

The network design illustration for this equation is known as the
direct form realization of the IIR filter, which is expressed by
equation (5-3). This illustration is given in figure 5-1 and is
obtained from reference 56.
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Figure 5-1. Direct form realization of IIR filter.

The advantages of this form are that the direct relation
between the llR filter equation (5-3) and the transfer function
equation (5-4) is easily seen, and it is easy to formulate
equation (5-4) given equation (5-3). The disadvantage of this
form is that coefficients ak and bk are very sensitive to discre-
tization errors. These errors will affect the accuracy and
possibly the stability of the calculations. This form is gener-
ally not recommended for filters of order three or higher.

5.1.1.2 Casoade Form

Equation (5-4) can be rewritten as

M 1  M2

S(1 - gkz ) E (1 - hkz 1 )(1 - nkZ )
k=I k=l

H(z) = A (5-5)
N 1  N2

E (1 - ckz - 1 ) E 1 - dkZ-I)(1 - kz - 1 )

k=I k=l
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where M1 + M 2 = M and N1 + N2 = N. The numbers 9 k and ck are
the real zeroes and poles of the transfer function. The numbers
hk, h*, dk, and dk are the complex conjugate zeroes and poles of
the transfer function. (A is a real number.)

This equation can be written as

[(N+1)/2) 1 + 1kZ-1 + 2kZ_ 2

H(z) = A E1 +1 + ... . 1.2 (5-6)

k=1 + .ukPl + m2kz

(where [(N+1)/2] is the greatest integer less than or equal to
(N+1)/2). Assume that M<N. If N<M, replace N in equation (6-6)

with M.

The network design illustration for this equation is known

as the "cascade form realization" of the IIR filter, which is
expressed by equation (5-3). This illustration is given in
figure 5-2 and is obtained from reference 56.

0z-lM Pi ,z-

d, i 12 P

Figure 5-2. Cascade form realization of the IIR filter.

The advantages of this form 'are

(1) the zeroes (roots) of H(z) are easy to find,

(2) it is convenient to use for filters whose parame-

ters are to be computed and changed in real time, and

(3) the poles (roots of the denominator) are easy to
f ind.
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The poles are Important because they determine the stability of a
filter. The filter in stable if and only If the poles are inside
the unit circle. If a pole Is on the unit circle, other criteria
have to be used to determine stability.

A disadvantage of this form Is that it is heavily subject to
underflow and overflow problems.

5.113 Paraltel Form

Equation (5-4) can be rewritten in terms of a partial
fraction expansion as

N1  Ak  N2  Bk(1 - ekz-1) M-N

H(z) = I+ - - + I Ckz -

kul 1 - Ckz k-i (1 - dkZ-1)(i - d*z "l) k=lk

(5-7)

The first two terms in equation (5-7) can be combined so that the
equation becomes

M-N [(N+1)/2) T Ok + TlkZ
H(z) = ki CkZ-1-+ k -+ .I...1a k a 1 - l kz - @2k 2Z 25 8k~i (5-8)

The network design illustration for this equation is known
as the "parallel form realization" of the IIR filter, which is
expressed by equation (5-3). This Illustration is given In
figure 5-3 and Is obtained from reference 65.

An advantage of this form is that the problems mentioned for
the direct and cascade forms are normally not encountered. A
disadvantage is that while pole locations can be easily located
(as in the cascade form), the zeroes cannot.
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Figure 5-3. Parallel-form realization with the real and
complex poles grouped in pairs.

5.1.2 Converting From Analog to Digital

The filters to be discussed In subparagraph 5.1.3 were
originally derived in the analog form. Since these filters were
discovered, a need developed to use frequency domain filters in
the digital form. Because the art of analog filter design is
highly advanced, it is considered advantageous to adopt the
design procedures developed for the analog form to convert to the
digital form. In this section four methods of analog-to-digital
converston are given along with their advantages and disadvan-
tages.
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The two desirable properties of any conversion method are

(1) The frequency axis in the "s plane" (the analog
plane) be mapped to the unit circle in the "z plane" (the digital
plane), ensuring that there is a one-to-one mapping between
frequencies in the s plane and frequencies in the z plane. If
this property is satisfied, the "frequency selective properties"
of the analog filter are said to be preserved. With a conversion
method that has this characteristic, the digital filter should
filter through all and only those frequencies that the analog
filter filters through.

(2) The left half of the s plane fReis1<0 be inside
the unit circle in the z plane (I z 1<1), which ensures the pre-
servation of filter stabil ity.

All the recommended conversion methods described in these sub-
paragraphs have at least the second property.

5.1.2.1 Impula. Invarlance

The main idea of the impulse invariance method is to pre-
serve the impulse response when converting from analog to digi-
tal. That is, the purpose is to ensure

h(n) = ha(nT) (5-9)

where T is the sampling period, h is the digital impulse re-
sponse, and ha is the analog impulse response. In other words,
the characteristic property of this transformation is that the
impulse response of the resulting digital filter is a sampled
version of the impulse response of the analog filter. Use the
following method:

(1) set up analog transfer function H(s) in direct,
cascade, or parallel form. (Generally, the parallel form is the
most preferable, because it is easy to perform step (2) when
using a table for transform pairs);

(2) obtain the inverse Laplace (or Fourier) transform
of H(s), giving the analog impulse response function h(t);

(3) get your digital impulse response function h(n)
using equation (5-9); and

(4) take the z-transform of h(n) to obtain your
digital transfer function H(z).

Steps (2) and (4) are jointly justified, because it can be shown
that the Laplace transform of the analog function ha is related
to the z-transform of the digital function h(t) by
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H~4) = (1/T) 1- (s + i(2n/T)k). t5-10)

z=e 
s T  k

With the z-transform, the relationship z=e s is used in

going from the s plane (for the analog function) to the z plane
(for the digital function). Each horizontal strip of the left
half of the s plane of width 2n/T is mapped into the unit circle

in the z plane (see figure 5-4, obtained from reference 55).
This multiple mapping may lead to aliasing (explained in chapter

3) because distinct frequencies from different strips in the s

plane can be translated into one frequency in the z plane.

The occurrence of aliasing can be seen by noting that if

s = a + in, then

z = esT = eaT(cosnT + i*sin7tT)

= eaT(cos(G + (2nn/T))T + i*stnko + (2nn/T))T)

(5-11)

for any integer n.

S plofe zpkM

T

7T

-T

Figure 5-4. The mapping of a .orizontal strio of w:dth 2n/T
in the s plane to the unit circle of the z plane,
through the impulse invariance method.
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A disadvantage in using this method is that it is subject to
aliasing. This method works best whGn used with bandlimited
filters such as low pass and band pass.

5.1.2.2 BIlinear Transformation

With the bilinear transformation, to go from the s plane
(which represents the analog filter) to the z plane (which
represents the digital filter), the following equation is used:

I + (T/2)s
Z = (5-12)

1 - (T/2)s

Likewise, s can be expressed in terms of z by

2 1 - z

s = - _(5-13)
T 1 + z

That is, the transfer function of the digital filter, H(z), is
set equal to the transfer function of the analog filter, H(s),
where s is expressed in terms of z as in equation (5-13), or
where z is expressed in terms of s as in equation (5-12). These
equations were obtained by the procedure outlined next.

A digital filter is essentially a difference equation. For
an analog filter, a differential equation is used. The analog
transfer function is obtained by using Fourier or Laplace trans-
forms. To obtain the bi Iinear transformation, integrate both
sides of the differential equation and use a numerical approxima-
tion to the integral so that the integrated equation is expressed
in discrete terms. Then take the z-transform of this equation to
get the digital transfer function. When comparing the analog and
digital transfer functions, it can be seen that s and z are
related as stated in equations (5-12) and (5-13). Reference 55
gives the derivation of these equations in more detail,

Illustrated in figure 5-5, which was obtained from reference
55, is the relationship between s and z.
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Figure 5-5. The mapping of the left half of the s plane to
the unit circle of the z plane, using the
bil inear transformation.

Reference 55 shows that the analog frequency 0 can be expressed

in terms of the digital frequency 4 as follows:

Q = (2/T)tan(6/2) (5-14)

The graphic relationship between Q and 0 is given in figure 5-6,
which was obtained from reference 54.

2.0

i .0 . 00

0 /4 /2

vT/2

Figure 5-6. The relation between analog and digital fre-

quency scales for tne bi I inear transformation.
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As seen from the last two figures, the bilinear transformation
maps an infinite range of frequencies onto the unit circle,
representing a finite range of frequencies. This mapping,
consequently, distorts the frequency scale.

The frequencies of interest in the s plane must be predis-
torted to make sure they will come out In the right places in the
z plane. The predistortion formula is

2
Q = (5-I5)

T*tan (eT/2)

To sum up, this method will probably produce warping in the
frequency axes. Frequencies In the s plane are mapped into
frequencies in the z plane in a distorted manner. To make up for
this distortion, the frequencies can be prewarped. As given in
equation (5-15), this method satisfies property (1) of subpara-
graph 5.1.2. This method works best when used with nonband-
limited filters such as band stop or high pass.

5.1.2.3 Direct Mapping of Differentials

There are three ways to employ the direct mapping of differ-
entials: backward difference, forward difference, and general-
ized difference. Consider the following differential equation
representing the analog filter:

N diy(t) M dix(t)
a i  = b i (5-16)

i=0 dt i  i=O dt i

Equation (5-16) is then discretized by

N M
E aiAi[Y(n)] = E biAiCx(n)1 (5-17)

=0 i=0

where Ai(y(n)] is the ith difference defined by the recursion

A1 +l[y(n)] = A{Ai[y(n)]) (5-18)
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and by the initialization

(1/T)[y(n) - y(n-1)] backward difference

(1/T)}y(n+l) - y(n)] forward differenceA i [y(n) ] =

- IS gi [y(n+i) - y(n-I)] general ized difference

T i=1 (5-19)

and *Ix(n)) is defined in the same way. The factor ot for the
generalized difference is a constant of the user's choice.

Backward Differences: When using backward differences, make

the replacement

dy y(n) - y(n-1) (5-20)

dt T

which, in terms of the relationship between s and z, corresponds
to

1 - z
9= (5-21)

T

and
1

Z =(5-22)
1 - sT

The relationship between s and z is illustrated in figure
5-7, (obtained from reference 54). As can be seen, property (1)
mentioned in subparagraph 5.1.2 (one-to-one frequency correspon-
dence) is not satisfied and that property (2) (stability preser-
vation) is satisfied.
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Figure 5-7. s plane to z plane mapping of jQ axis for
method of backward differences.

Reference 55 describes how property (1) becomes closer to
being satisfied the higher the sampling rate. The high sampling
rate required to make this technique adequate for analog-to-digi-
tal conversion is said to result in a very inefficient represen-
tation of the filter and the input signal. This technique is
considered usable for low-pass filters only. An example for
which this technique can be used is air flight control, where
frequencies are normally at 100 Hz or less. An advantage of this
method is the simplicity of the design.

Forward Differences: When using backward differences, we
make the replacement

dy y(n+l) - y(n)
- <- > (5-23)

dt T

which, in terms of the relationship between s and z, corresponds
to

z-l
s =  (5-24)

T

and

z = 1 + sT (5-25)
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The mapping of the frequency axis from the s olane to the z
plane is illustrated In figure 5-8, as obtained from reference
54. As can be seen property (1) mentioned in subparagraph 5.1.2
(one-to-one frequency correspondence) is not sati. ied. Also
shown from either equation (5-16) or equation (5-17) property (2)
(stability preservation) is not satisfied either. This method is
not recommended.

S PLANEL

Figure 5-8. s plane to z plane mapping of jA axis
for method of forward differences.

Generalized Differences: As can be seen from equation
(5-19). this method uses higher-order differences to replace
lower-order differentials. The mapping between tne s plane and
the z piane for this method is

1 L
s = - £ 4i (zi  - f ) (5-26)

T 1=1

where L is the order of difference to be used. Reference 54
shows that with the proper choice of coefficients si, the fre-
quency axis in the s plane is mapped monotonically to the unit
circle in the z plane, thereby satisfying property (1) in sub-
paragraph 5.1.2. The mapping of equation (5-26) can be shown to
be conformal. A conformal mapping preserves angles and relative
locations of points from the domain to the range. (From this
conformal ity, the left half of the s plane is mapped to the
inside of the unit circle of the z plane, thereby, showing that
property (2) is satisfied.)
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This method is considered efficient and accurate, if the aporo-
priate coefficients m i can be found. It is normally difficult to
determine these coefficients. As a result, other techniques for
digitizing filters are sought.

6.1.2.4 Matched Z-Transformatlon

The matched z-transformation is motivated by the following
facts, stated without proof:

(1) to maintain stability, all the poles of H(z), the
transfer function in the z plane, must lie within the unit
circle, and

(2) all poles and zeroes must either be real or occur
in complex conjugate pairs.

As such, this method matches poles and zeroes in the s plane
to poles and zeroes in the z plane. For a real pole or zero, say
-a, the transformation Is

s + a - 1 - z-le -aT (5-27)

where T is the sampling period.

For complex conjugate poles or zeroes, say a~oi, the transforma-

tion is

(s+a-bi)(s+a+bi) =

(s+a)2 + b2 1 - 2z-le-aTcos(bT) + z-2e -2aT (5-28)

(Since b=O in the real case, it is easily seen that equation
(5-28) can be simplified to equation (5-27).) The continuous
transfer function H(s) must be in factored form to apply the
transformation. The advantages of this method are that it
ensures stability (it was designed to) and that it is very easy
to implement. One disadvantage is that it may lead to aliasing.
For instance,

(s+a)2 + b2 yields the same transformation as (s+a)2 + (b+2n)2

(5-29)

This transformation is considered unsuitable where H(s) is an
all-pole system; that is, H(s) has only poles and no zeroes.

Quite often for this case, H(z) is an all-pole system that does
not adequately represent the desired continuous system. General-
ly, the bil inear transformation and impulse invariance methods

are said to be preferred over the matched z-transformation.
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5.1.3 Low-Pams IIR Filters

Discussed next are three classes of low-pass IIR filters:
the Butterworth, the Chebyshev, and the elliptic (or "Cauer")
filters. Each of these filters takes the form

H(40 2  = 1 (5-30)
1 + efN (.)

where H is the frequency response, e is the frequency variable, N
is the order of the filter, 6 is a factor in the interval [0,1)
that determines the height of the passband ripples, and f is an
nth-order polynomial containing only odd or only even powers of
o. Banapass, high-pass, and band-rejection filters can then be
designed from any of the aforementioned low-pass filters using
the methods described in chapter 4.

6.1.3.1 Butterworth Filters

Butterworth filters take the form

1
1 + (4)/6)c)2N( - 1

wnere w c is the cutoff frequency of the filter.

The Butterworth filter contains the following characteris-
tics:

(1) It is defined by the property that the magnitude
response I H(o) I is maximally flat in the passband, meaning that
the maximum number of derivatives, 2N - 1, of the squared magni-
tude furiction IH(o) 2 re equal to zero at A=O.

(2) I H(W) I = 1/ / at the cutoff frequenty O c since,
when attempting to simulate the ideal low-pass filter, it is
desired that n->wl im I H(0) I = I for all ( in

[-OcIOc]. (Im lH(s) I= 1 for all l l < c')
N- >a

(3) It is computationally and conceptually simpler
than the Chebyshev and ellipt.c filters.

(4) The higher N is,, the better this filter simulates
the ideal low-pass filter.

(5) The magnitude of the frequency response is monoto-
nic in both the passband and the stop band.
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illustrations of the Butterworth filter, obta~ned from
reference 55, can be seen in figure 5-9.

N#I

0

Figure 5-9. Dependence of Butterworth magnitude
characteristic on the order N.

6.1.3.2 Chebyshev Filters

Chebyshev f ilters take the form

H (g~j 2 1 + L*2V2 (s/s5-2
N C

where VNWx is the nth order Chebyshev polynomial defined by

VNWx = cos(Ncos- x). (5-33)

(For example, for N=2, VN(X)=V2(x)2x
2 _1.) (5-34)

The Chebyshev filter contains the fol lowing characteristics:

(1) It distributes uniformly the inaccuracy in simu-
lating the ideal LP filter in either the passband or the stop
band (but not both). That is, it produces an pquiripple curve
either in the passband (aboul the mie I H(e) 12=1) or in tne stop
band (about the line I H(O) I =0).
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(2) It usually leads to a lower-order polynomial than
does the Butterworth filter to accomplish the same result.

There are two types of Chebyshev filters. Chebyshev Type I
filters are equiripple in the passband and monotonic in the stop
band. Chebyshev Type II filters (sometimes called inverse
Chebyshev filters) are monotonic in the passband and equtripple
in the stop band. Figure 5-10, obtained from reference 54,
illustrates Type I and Type II Chebyshev filters of odd and even
orders. (The A near the vertical axes is what reference 54 uses
at the parameter related to stop-band loss.)

I

lI I I

I 1

LtL

CNEIVSHEV TYPE I

I I

CHEISMEV TYPE A

Figure 5-10. Type I and 11 Chebyshev filters
of odd and even orders.

6.1.3.3 Elliptic Filters

Ell iptic (or Cauer) filters take the form

I H(O)l 2 = 5-35)

1 + 2U2(,L)
N
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where UNCOL) is a Jacobian e'liptic function. Discussion of
this function is highly intricate and is beyond the realm of this
paper. Those Interested In studying this function are referred
to reference 58. Those interested in further studying the design
of elliptic filters are referred to references 59, 60, and 61.

The elliptic filter contains the following characteristics:

(1) It distributes uniformly the inaccuracy in simu-
lating the ideal LP filter In both the passband and the stop
band. In other words, it produces an equiripple curve in the
passband (about the line IH() 2 =1) and in the stop band (about
the line I H()l 2 =0).

(2) It yields a smaller transition band than does the
Chebyshev. (Note that the Butterworth filter does not yield a
transition band.)

Figure 5-11, obtained from reference 55, illustrates the
elliptic filter.

IH(If)

6- - -00-

I

I

I

0 £1

Figure 5-11. Equiripple approx~mation in
both passband and stop band.
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6,2 Finite Impulse Response (FIR) Filter Dealan

The FIR filters were briefly described in paragraphs ',7 and
1.8. In this section, modes of expression for FIR filters and
FIR filter design techniques are given. A disadvantage in
implementing an FIR filter Is that It cannot be expressed in
closed form. Instead, it must be calculated through iterative
procedures, and thus generally requires a great deal of computa-
tional time and the use of powerful computational facilities.

in many signal-processing applications, phase relations are
important and nust not be disturbed by filtering. For such
purposes, a zero phase shift would be ideal; in oractice, howev-
er, a filter whose phase shift is proportional to frequency is
generally used. Such a filter is called linear phase. An
advantage in using FIR filters is that they can have exact linear
phase. Referring to figure 3-6, it has been found that the most
favorable conditions for an FIR design are large values of 61,
small values of 62, and large transition widths.

5.2.1 Modes of FIR Filter Expression

An FIR filter can be expressed as

N
y(k) E a( 0 x(k-i) (5-36)

i=0

There are four popular modes of expression for the transfer
function of an FIR filter. They are

(1) the direct form,

(2) the cascade form,

(3) the frequency sampling form, and

(4) the linear-phase form.

The first two forms assume those names because when they are
illustrated in network diagrams, they are depicted in the forms
mentioned. The direct and cascade FIR forms may be derived from
the corresponding IIR forms by simply omitting the pole-producing
portions of the IIR forms. (The second term on the right-hand
side of equation (5-3) generates the pole-producing terms in the
IIR modes of expression.) The advantages and disadvantages of
the direct and cascade forms are essentially the same for FIR
filters as they are for IIR filters. As a result, it will be
sufficient just to give their forms in the following subpara-
graphs.
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The frequency sampling form for FIR filters is a type of
parallel form of HR filters but is derived in an entirely
different way from the parallel form. The fact that FIR filters
can have exact linear phase is used for the linear-phase form.
When given Its form, It will be easy to see how it can produce
considerable savings In computations.

5.2.1.1 Direct Form

The direct form of the transfer function for FIR filters can

be found to be

N
H(z) = E akz-k (5-37)

k=O

5.2.1.2 Cascade Form

The cascade form for the transfer function of FIR filters is

Y(z) K
H(z) = - = a 0 1 HI (z) (5-38)

X(z) i=1

where Hi(z) is either a seiond-order cascade section, that is,

Hi(z) = 1 + 1i z ''  + a 2 iz- 2  (5-39)

or a first-order cascade section, that is,

Hi(z) = 1 + all z -
1  (5-40)

and K is the integer part of (N+1)/2, where N is the order of the
f i I ter.

It should be mentioned here that if linear-phase filters are
realized in this form, sensitivity to discretization errors In
the coefficients will be less, but the errors may destroy the
phase linearity.

5.2.1.3 Frequency SamDling Form

As mentioned in subparagraph 6.2.1, this form is a type of
parallel form but is derived differently from the parallel IIR
form. The parallel IIR form was derived from a partial-fraction
expansion of the transfer function. Since partial-fraction
expansions are based on poles, this approach cannot be considered
for FIR filters. This form is derived by a design technique
called the frequency sampling design technique and is explained
in subparagraph 5.2.2.2.
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5.2.1.4 Linear-Phase Form

Many applications require filters whose phase response is
linear with frequency. It can be shown that linear-phase FIR
filters have a symmetrical Impulse response, that is, for an
N-order filter

h(n) = h(N-1-n) (5-41)

This symmetry requirement leads to certain economies in implemen-
tation. In an FIR filter, the h's correspornd one-to-one with the
a's of equation (5-37). Because of the symmetry in h(n), equa-
tion (5-37) becomes

y(n) = aox(n) + alx(n-1) + ... + alx(n-N-1) + aox(n-N)

(5-42)

which can be written for N even, as

N/2 - 1
y(n) = I bntx(n-1)+x(n-N+i)] (5-43)

i=O

or for N odd, as

(N-1)/2 - 1
y(n) = bN/ 2 x(n - N/2) + E bnix(n-1)+x(n-N+i)l

1=0

(5-44)

Since the number of terms in the sum is reduced by approximately
one-half, considerable economies in computation are achieved.
Because of the symmetry in this form, errors in quantizing
coefficients, that is, discretization errors of the coefficients,
will not disturb the linear-phase characteristic alt.'ough perfor-
mance but may still degrade performance.

6.2.2 FIR Filter Design Teohnlques

The techniques covered in this section are

(1) windowing,

(2) frequency sampl ing design, and

(3) equiripple design.
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There are many types of windowing and some will be oriefly

described here. The second two techniques are computer-aided
design techniques and require a great deal of iterative calcula-
tion.

5.2.2.1 Windowing

It is natural to design a filter by first simulating the
ideal low-p3ss filter, defined in equation (3-16). In doing so,
the impulse response h(n) should meet these two conditions: (a)
it is finite, and (b) it is causal, In particular, that h(n) = 0
ftr n < 0.

The impulse response is the inverse Fourier transform of the
transfer function. The impulse response of the ideal low-pass
filter transfer function can be found to be

sin(acon)
h(n) = -- (5-45)

n

Neither condition (a) or (b) above is met. The ideal low-pass
filter and h(n) are shown in figures 5-12a and 5-12b, obtained
from reference 56.

hrma

1)

F;oure 5-12. (a) Ideal low-pass filter characteristic
with cutoff at (c and (b) impulse response
corresponding to ideal low-pass filter.
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A solution to meeting conditions (a) and (b) is to find a
finite, causal approximation to h(n) which can be done by window-
ing the impulse response, (by truncating it for I n I greater than
some cutoff time) and by shifting the response in time until the
system is causal. The two steps are shown in figures 5-13a and
5-13b, obtained from reference 56.

As explained towards the end of paragraph 3.3, truncating
the impulse response would result in a boxcar function with
ripples (see figure 5-13c). Three deviations from the ideal
low-pass filter emerge:

(1) the passband response is no longer flat but shows
ripples that steadily increase in amplitude until the cutoff
frequency,

(2) the stop-band response is no longer zero, and

(3) the transition between passband and stop band is
no longer abrupt.

h(n) h(n)

(a) (b)

I H(eie)

1.0

i GC

(c)

Figure 5-13. (a) Truncated version of ;mpulse response in
figure 5-12, (b) Truncated response shifted
so as to make system causal, and (c) Filter
frequency response resulting from truncation
of impulse response.
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To minimize these ripples, multiply the original infinite-
impulse response by a windowing function (other than the rectan-
gular function that was initially introduced). There is no
finite window function whose transform has no side lobes, but
functions can be found whose transforms have very small side

lobes. If one of these functions is used, the ripples in the
frequency response will be correspondingly reduced.

Some of the best-known windowing functions are listed in
table 5-1 and shown in figure 5-14, along with their transforms.
(The table and figure are obtained from reference 56.)

TABLE 5-1. COMMON WINDOWING FUNCTIONS

Name Description'

Rectangular w(k) - I

Fejer.Bartlett %,(k) - I - I2k/Nl

Hanning w(k) -(1 + cos k/N)/2
I

Hamming w(k)- 0.54 + 0.46 cos rk/ N

Kaiser %011m1J9,

*For all windows. w(k) - 0 for tAI > N.

For the Kaiser window, 10 is the zeroth-order Bessel func-
tion and ea is a constant that specifies a frequency response
tradeoff between peak height of the side lobe ripples and the
width or "energy" of the main lobe. (The Fejer-Bartlett window
is also called the triangular window.) Reference 55 also men-
tions the Blackman window, which is 4)(n) = 0.42 - 0.Scos(2nn/
(N-1)) + 0.08cos(4nn/(N-1)), 0<n<N-1.
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-# 0

0 1 2 3

Figure 5-14 (Con.). Corrrnon window functions and their trans-
forms: (a) rectangular, (b) triangular
(Fejer-Bartlett), (c) Hanning,
(d) Hamrming, and (e) Kaiser.

Reference 55 compares various windowing functions in one graph.which is inserted here as figure 5-15.

In all of these windowing functions, the side lobes are much
smaller than those resulting from the rectangular window, and the
main lobes are all wider than those resulting from the rectangu-
lar window, producing a much closer approximation to the ideal
iOW-oass filter. The search for the ideal windowing function is
a search for the best tradeoff between side lobe ampl itude and
main lobe width. No FIR filter designed by Fourier transforma-
tion and windowing is optimal. The appeal of the technique lies
in its simplicity and economy.
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Finding the desired transfer function using windows can De
summarized as follows:

(1) write the equation for the desired frequency
response,

(2) find the impulse response (taking the inverse
Fourier transform of the frequency response),

w(n) Reclongular

10

- Homming

/" * Blockmor4
0.4-

0.2 / Honning
0.240

0 -IN-I ft0 N-i

Figure 5-15. Commonly used windows for FIR filter design.

(3) select a windowing function and a window width to
meet the required ripple and transition-width specifications,
(Window the impulse response accordingly.)

(4) shift the impulse response to make it causal, and

(5) take the Fourier transform of the product of the
windowing function and the new impulse response. The result is
the desired transfer function.

6.2.2.2 Frequency Sampling Design

The approach of this method is to take samples of the
frequency response and to design an FIR transfer function based
on these samples. The approach starts by cons!dering the trans-
fer function H(z) of a digital filter, which can be found by
taking the z-transform of the impulse response h(n)
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N-1
H(z) = h(n)z - n (5-46)

n=O

The impulse response can be found from the frequency response by
applying the inverse DFT as

N-1
h(n) = (l/N) Z H(k)Wnk (5-47)

k=O

where W = exp(12n/N).

Combining these two relations gives

N-1 N-1
H(z) = (/N) r z-n E H(k)Wnk (5-48)

n=O n=O

which can be rewritten as

1-z-N N-1 H(k)
H(z) = I (5-49)

N k=O

As can be seen, this design procedure consists simply of substi-
tuting samples of the desired frequency response into equation
(5-49).

As seen from the last equation, there is a pole on the unit
circle which leads to marginal stability (see paragraph 3.8.) To
ensure stabijity, multiply z-1W k by a number that is almost one
(say 1 - 21 ). Good accuracy for this method requires many
closely spaced samples. This design works particularly well for
narrow-band filters in which only a few samples are nonzero.
(Reference 55 states that even if more than a few samples are
nonzero, the frequency-sampling design method yields excellent
results.) A disadvantage of this method is that It lacks flexi-
bility in specifying the passband and stopband cutoff frequen-
cies. in addition, the ripple response for this design procedure
is poor. Reference 65 suggests a method in which the ripple
response can be greatly improved.

6.2.2.3 Eguirlpple Design

The approximation error of the frequency sampling design
tends to be highest around the transition region and smaller in
areas remote from the transition region. The equiripple design
affords a way in which the approximation error can be spread out
more uniformly.
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Of concern are the zero-phase FIR filters with frequency
responses of the form

M

H(e ) = h(n)e -In (5-50)
n-=M

For zero-phase filters, symmetricalness, h(n) = h(-n), and
causal ity are required. Shift the summands in equation (5-50)
are shifted to obtain causality, so that

M
H(et') = h(O) + E 2h(n)cos(jn) (5-51)

n=1

To be specified for the equiripple curve are the parameters M,
61' 32 # 4)p, and G), where 61 and 62 are the upper and lower
ripple tolerances, and (a and ws are the passband and stop band
cutoff frequencies, (see figure 3-6 or figure 5-16).

1 -81

82

Figure 5-16. Equiripple approximation of a low-pass filter.
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Messrs. 0. Herrmann and H. W. Schuessler, (references 66 and
67); E. Hofstetter, A. V. Oppenhelm, and J. Seigel (references
68 and 69); and J. Seigel (reference 70) developed procedures in
which M, 61, and 62 are held fixed and p nd es are solved.
Messrs. T. W. Parks and J. H. McClellan, (references 71 and 72)
and L. R. Rabiner (references 73 and 74) developed procedures for
which M, 6), and ap are held fixed and for which 6, and 62 are
solved.

In an example using a method by Herrmann and Schuessler,
there are five frequencies greater than 0 and less than n where
there are maxima and minima in the ripples (see figure 5-16). It
can be easily shown that for a symmetric filter of order
N = 2M+1, there will be at most M+1 local extrema in the interval
0<0<7[.

Consider the fact that at the passband cutotf frequency, the
frequency response curve is at the lower tolerance I imit about 1
and that at the stop band cutoff frequency, the curve is at the
higher tolerance limit about 0. This fact can be used to obtain
the following two equations:

H(eiQ ) = 1-6. (5-52)

and

H(e S) = 62 (5-3)

By observing either figure 5-16 or equations (5-52) and (5-53),
the following set of equations can be written:

H(e iO ) = 1 + 6., H(e i ) = 62 (5-54)

H(ei 1) = I - 61' H'(e i 
1 ) = 0 (5-55)

H(elA 2 )  = 1 + 61, H'(ei' 2 ) = 0 (5-56)

H(e'6 3 ) = -62. H'(ei' 3 ) = 0 (5-57)

H(eG)4 )  = 62. H'(e'a 4 ) = 0 (5-58)

H(e''05 ) =-62, H'(e's 5 ) = 0 (5-59)

For this method, there is the flexibilty to decide which of the
M-1 frequencies properly between 0 and n should be in the pass-
band and which ones should be in the stop band. In this case,
M+1=7, there are seven unknown coefficients (h(nf) in equation
(5-51). There are 5 unknown frequencies . at which
extrema occur, so there are 12 equations in 12 unknowns. These
equations are nonlinear and must be solved by an iterative
procedure.
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Generally, there are 2M equations in 2M unknowns. This
approach has been found to be satisfactory for orders of M = 30
or lower, and it provides the narrowest transition between
passband and stop band.
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CHAPTER 6

KALMAN FILTERS

A Kalman filter is a linear, recursive algorithm for comout-
ing an optimal estimate from measurements, some of which may
contain noise. The noise on the measurements is assumed to be
white; namely, the noise values are not correlated over time.
Also assumed is knowledge of the statistics of. the noise on the
measurements. The algorithm is recursive and thus requires an
initial estimate to start the filter as well as a guess as to the
correctness of that estimate. Finally, the algorithm is linear,
consisting of matrix equations. (Reference 3 has an excellent
intuitive introduction to Kalman filtering in its first chapter.)

The Kalman filter is most often used as a data-processing
algorithm (a computer program) and can be extremely efficient,
requiring a minimum of computer storage and using all available
data by weighing the data measurements. The filter has the
ability to take several different types of data and generate an
estimate of a totally different quantity. Because it is a
predictor-corrector, it can generate its next estimate based on
less current data than would be needed for a directly calculated
solution. The data need not be entered at equally spaced time
intervals, at the same time, or in certain sequences, The filter
allows the user to apply the knowledge of the behavior and
statistics of both the measurements and the quantities to be
estimated to obtain the solution; in fact, these models and
statistics may vary with time. In addition, a self-contained
error analysis is included in its equations. Finally, as ,;
predictor, it is useful for real-time control.

A few caveats apply, however. To begin with, there is no
"general" Kalman filter. Each algorithm is dependent on the
quantities to be estimated and their dynamics, the measurements
available and their statistics, and the initial valuas needed to
start the algorithm. Secondly, the algorithm is most efficient
if matrix inversions can be avoided. Matrix inversions can
usually be done, although it depends on the application, that is,
the particular Kalman filter written. Thirdly, a Kalman filter
will update with less current data than is required for a calcu-
lated solution, but if updating with this data is done for too
long, the estimate may become grossly invalid. Fne filter is
said to have diverged. Fourthly, the order of tne input of data
is unimportant only for the basic Kalman filter: a filter whose
dynamic and measurement models are both linear. Though all
derivations and claims of optimality are valid only for such
filters, linearity is rare in the real world. Hence, suboptimal-
ity is often settled for using an extended Kalman filter.
Sometimes it is found that permuting the order in which data is
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entered may significantly change the estimate. Finally, the
validity of the self-contained error analysis is dependent on the
degree to which the noise statistics fit the theoretical assump-
tions. For example, biases in the data will not be indicated by
the output error covariance matrix.

Before describing a Kalman filter, the description of some
terms are in order.

The "expected value" of g(x) of a random variable X whose
frequency function is f(x) is

E[g(x)] = J g(x)f(x)dx

Loosely speaking, the expected value of g(x) is the average of
g(x).

An "estimate" is a computed value of a quantity. For
example, the sample mean

n x

i=1 ?q

is an estimate of true population mean g.

A statistic t is called an "unbiased estimate" or "unbiased
estimator" of the parameter v if E[t) = v. For example, the
sample mean 3 can be shown to be an unbiased estimate of the true
population mean p.

An "optimal estimate" is one that minimizes the variance of
an estimate and is unbiased. When using an optimal filter such
as a filter computing an optimal estimate, it is assumed that the
exact descriptions of the system dynamics and the measurement
process are known. In addition, an optimal filter must model all
error sources in the system including unmodeled parameters,
linearization errors, leaky attitude controls, and solar winds.

Error sources mentioned in the previous paragraph constitute
process noise," noise that stems from mismodeling. Other error

sources include those of "measurement noise," which stems from
faulty measuring devices or the misuse of those devices. (Be-
cause the Kalman filter is based on least squares, an error
source inherent in the Kalman filter is the difterence between
the estimate sample measurement values and the true population
measurement values.) An example dealing with unmodeled parame-
ters is filtering a position parameter without including the
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velocity or acceleration parameter into the model, which where
inclu -ing these parameters could facilitate filtering the posi-
tion parameter.

Leaky attitude controls and solar winds are factors that can
lead a spacecraft off course. They are usually considered
negligible and as such are normally not included in the models.
The errors that may result from their not being included consti-
tute process noise.

A suboptimal filter is a filter that does not take into
account all the factors that have been mentioned in describing an
optima; filter. A "predictor-corrector" Is a recursive algorithm
that has two steps to each recursion: a predictor and a correc-
tive step. A predictor step is the state of the system predicted
by using the output data of the preceding recursions in which the
nth state of the system is predicted using the first n-1 states.
A corrective step is the given input nth state of the system used
to correct the predicted nth state of the system, thus producing
the final output nth state of the system. (The nth state of the
system is the state of the system at the nth recursion.)

6.1 Linear Discrete Kalman Filter

In the case of a linear discrete Kalman filter, the dynamics
of the quantities to be estimated may be described by linear
difference equations. Additionally, the relationship between the
measurements, taken at discrete times, and the estimated quanti-
ties is linear.

6.1.1 Definitions

To write such a Kalman filter, begin with these definitions.

(1) A model describing the dynamics of the quantities
to be estimated. This model will be of the form

x(k) = #(k,k-l)x(k-1) + G(k,k-1)w(k-1) (6-1)

where

k refers to the kth time point tk;

x(k) is the set of quantities to be estimated, arranged
n a vector, and called the state vector;

*(kk-1) is called the transition matrix and describes the
change in the state vector from time tk1 to tk;
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G(k,k-1) is czI led the input matrix; for practical pur-
poses, it is generally taken to be equal to the
identity matrix;

anid

w(k-1) is called the plant or process noise. The vector

w(k-1) is assumed to contain zero-mean white noise
with Gaussian distribution. The vector resulting
from the product G(k,k-1)w(k-1) represents the
unknown portion of the dynamic model. The covart-
ance matrix of w(k) is designated by Qk).

(2) An equation relating the state vector to the
measurements. The form of this equation is

X(k) = H(k)x(k) + v(k) (6-2)

where

y(k) is the measurement at time tk;

H(k) is called the measurement matrix and linearly relates

the measurements to the state variables;

and

v(k) is the measurement noise. The vector v(k) is assumed
to contain zero-mean white noise with Gaussian
distribution. The covariance matrix of v(k) is
designated by R(k).

(3) Finally, the following quantities are needed:

x(O) the initial state estimate; and

P(O) the corresponding error covariance matrix. (In

the Kalman filter algorithm, Pk is the covariance
matrix of the estimate error of the kth sta e

vector. That is, Pk = E[(x(k)- k)((k)-K) )

To write a Kalman filter, three matrices, :. G, and H,are
needed to define the dynamic and measurement structures as well
as the matrices, Q and R, to define the dynamic and measurement
statistics. Also needed are the initial values, "(0) and P(O).

Given these items, the filter is written using the equations
described next. :n these equations, the notation denotes the
estimate of the state vector x. The notation x(a/b) signifies
the estimate of the state vector at time ta given measurements
taken up to and including time tb.
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The first step in this Kalman filter algorithm is the
extrapolation or time update for the estimate and its covariance
matrix. These equations are

AA

x(k/k-l) = *(k,k-1)x(k-1/k-1) (6-3)

and

P(k/k-1) = *(k,k-1)P(k-1/k-1) T(k,k-1) + G(k,k-1)Q(k-t)GT(k,k-1).

(6-4)

The next step is to compute the weighing matrix K. called
the Kalman gain, by

K(k) = P(klk-1)HT(k)[H(k)P(k/k-1)HT(k)+R(k)}- (6-5)

Finally, the output is obtained by

W(k/k) = (k/k-1) + K(k)[y(k) - H(k) (k/k-1)j (6-6)

and

P(k/k) = [I - K(k)H(k)] P(k/k-1), (6-7)

where I is the proper size identity matrix.

x(k/k) in equation (6-6) is, ultimately, the result for the
kth step in the algorithm. P(k/k) of equation (6-7) is used as
P(k-1/k-1) in equation (6-4) in a recursive step. Equations
(6-3) through (6-7) represent one recursive step in the Kalman
filter algorithm.

Table 6-1 is obtained from reference 2 and aives a summary
of the entire algorithm. The top two boxes give the original
model equations, initial conditions, and assumptions. Equations
(6-1) and (6-2) are equivalent to the system and measurement
model equations. (The z in the table is the same as the y vector
of equation (6-2).) The "'other assumptions" equation in the
second box means that the system model errors and the measurement
noises are uncorrelated. The equations in the bottom two boxes
correspond to equations (6-3) through (6-7), which comprise one
recursive step in the algorithm.
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TABLE 6-1. SUMMARY OF DISCRETE KALMAN FILTER EQUATIONS

System Model xk - 4lc-k-i + wk-i ,  11. - N(, Qk)

Measurement Model Kk - H~k +1k, a - N(., Rk )

Initial Conditio)s Ex(O)J ^OE[L(-(O) -o)x(O) - o)T u Po

Other Assumptions E[_kT] 0 for all j, k

State Estimate Extrapolation .k(-) 0k-1.ik-I( )

Error Covariance Extrapolation Pk(-) t Ck-I Pk-l (+) 0k-IT + Qk-I

State Estimate Update ;k(4) ;_k(-) + KkI[4 - t kl(-)]

Ertor Covariance Update Pk(+) [I - KkHkI Pk(-)

Kalman Gain Matrix Kk - Pk(-) HkT(HkPk(-)lIkT +Rkj "

(-) and (+) are used to denote the times imnediately

before and immediately after a discrete measurement.
For example. P (+) and P (-) in the table are equivalent
to P(k/k-I) in equation (6-7).

Several quantities in equations (6-3) through (6-7) are of

particular interest.. The vector H(k)(k/k-1) in equation (6-6)
is called the predicted measurement~and its difference with the
actual measurement, given by

y(k) - H(k)x(k/k-1) (6-8)

is called the innovation. Ihis vector is often used for testing
for filter divergence or for data editing.

The matrix

H(k)P(k/k-1)HT(k) + R(k) (6-9)

in equation (6-5) is considered the covariance matrix of the
innovations and is usually chosen to be one-dimensiona, namely.

a scalar, in the following manner. 'if only one measurement is
input at time tk, then in equation (6-2) y(k) ;s a scalar, H(K)
as only one row, and v(k) is a scalar. The matrix (6-9) is then

a scalar. whatever the size of P(k/k-1). If more than one

6-6



measurement is available at time tk , it is usually more economi-

cal in computer time to process each measurement individually,
since matrix inversions are avoided,. Hence, the first measure-
ment used woukf be preceded by a time update (equations (6-3) and
(6-4). (The estimate A and the estimate error covariance matrix
P being is updated from time tk_1 to time tk. (equations (6-3)
and (6-4j) The other measurements at time tk would not need a
time update, so only equations (6-5), (6-6), and (6-7) would be
used with the old x(k/k-1) and P(k/k-1) of the previous step
being replaced in each equation by the new ones.

As mentioned before, for a Kalman filter with linear models
and the assumed noise statistics, the order in which all the
measurements at time tk are processed is not significant. Most
importantly, processing the measurements indi/idually will give
the same output as processing them together !n a measurement
vector if there is no cross correlation among the measurements at
time tk. Usually this is the case or at least can be assumed
true with a minimum of error.

The preceding equations will easily yield a computer program
which is a working Kalman filter. The problem remains, however,
to make sure the filter does the job for which it was intended.

Once written, the fi'lter must be subjected to extensive simula-
tion testing. Testing is necessary to detect modeli ng errors.
stat'stical assumption errors, inappropriate initial conditions,
biases, correlated noise sequences, and finally to determine
tuning value.

FiItei t ining is the process of achieving the best possible

estimatio. pvr;crmance from a filter once its structural form has
been specified. In a Kalman filter, the structural form is
specified by the mPtrices 0, G, and H. The initial estimate

error covariance matr'ix P(O), the model error covariance matti'
0, and the measurement noise covariance matrix R are the vari-

ables modified during tuning. The use of Q and R is normally
based on the knowledge of w "the system model error) and v (the
measurement noise). These vectors, w 3nd v, account for actual
noises and disturbances in the physicai sysitem as well as inade-
quacies in the dynamic and measurement modeis.

6.2 The Linear Continuous Kaiman Filter

For a linear continuous Kalman filter, start with the

dynamic model

x~t = F(t)x(t) + G(t)w(t) ( -0

and the measurement model
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y(t) = H(t)x(t) + '.(t) (6-11)

with initial values x(O) and P(O), where w(t) and v(t) are
zero-mean white noise processes uncorrelated with x(O) and have
covariance matrices Q(t) and R(t) (see table 6-2).

TABLE 6-2. SUMMARY OF CONTINUOUS KALMAN FILTER
EQUATIONS (WHITE MEASUREMENT NOISE)

System Model - (1 F(t I,(t)(t) + C(tw(t), jit0- N(t.Q. 0(t))

L Mceasiscnict Model L(t) " II(). (t) 4 v(t). X(t)- NNQ R(t))L Initial Co dtions E L(O)l =;o. :(.(O o) - -)(x() - ,T ) = re

Ofter Assump'ions R- (ti) exists

State Estimate j(t) - F(t)j(t) + K(t)lf.(t) - Hi(t)(t)J, . (0) j0

Error Covanance Propagation P(t) = F(t)P(t) + P(t)FT(t) + G(t)Q(t)GT(t)

-K(t)R(t)KT(t), P(O) = P.

Kalman OCin Matrix K(t) = P(t)HT(t)R 1'(t) when Ew(t)jT()I = 0

. IP(t)HT(t) 4 G(t)C(t)JR_ (t)

when rjEWfltT(T)I Qt)6(t - ,)

Then the filter equations are

_It) = F(t)^(t) + K(t)[y(t) - H(t)xlt) , (6-12)

and

(t) = F(t)P(t) + P(t)Fr(t) + G(t)Q(t)G' ). - K(t)R(t)KT(t)

(6-13)

with

K(t) = [P(t)HT(t) + G(t)C(t)] R-1 (t) (6-14)

where Etw(t)vT(s)l = C(t)d(t-s), with E representing the expected
value and 8, the Dirac delta function. The three equations
comprise one recursive step in the continuous Kalman filter
algorithm.
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The problem is, in part, to solve P(t) in equation (6-13).
whirch is known as the "matrix Riccati equation." (Reference 2
gives methods for solving this equation.) Then plug P(t) into
equation (6-14) to solve for K(t), which is used ;n equation
(6-12) to obtaii, the final desired result A(t) for a particularX

recursive step. (See reference 2 for further discussion.)

6.3 Extended Kalman Filters

An extended Kalman filter is a data-processing algorithm
which is based on the Kalman filter algorithm and which effi-
ciently provides estimates for nonlinear problems. Such filters
are suboptimal because no theoretical optimalitv of the estimate
can be proven. Either or both of the given models (continuous or
discrete, otherwise known as "dynamic" or "measurement") of a
Kalman filter may be nonlinear for an extended Kalman filter to
be required. The extended Kalman filter is still a linear
algorithm, however.

For an extended Kalman filter, assume the dynamic model is

(t) = f(x(t),t) + G(x(t),t)w(t) (6-15)

with initial conditions x(t O ) and P(O) = coy ix(tO),x(to)J, where
w(t) is a zero-mean, Gaussian noise vector, such that
covlw(t),w(s)i = Q(t)a(t-s), and covix(t0 ),w(t)i = 0 for t > to.
The notation covf.,.) represents the covariance matrix of the two
vectors. The 6 is the Dirac delta function. The vector f is a
nonl inear function of the state vector x(t) and of the time t.
Notice that the model (6-15) is not completely general since the
dynamic noise is assumed additive.

The measurement model is given by

Yjtk) = h(x(tk),tk) + V(tK), k = 0,1,..., (6-16)

where v(tk) is the zero-mean measurement noise vector, with
CovIv(tk)v(tk)= R(k), covtv(tk),V(tJ) = 0, covfx(tO),V(tk)
0, and co v w(t),v(tk)) = 0.

Note that the measurement model, though nonl inear, is sti I
discrete since the measurements are taken at discrete times.
Also assume the initial values "(0) and P(O) are given.

Then the extended Kalman filter update from the measurement
at time tk to the measurement at time tk+1 is accomplished in the
following manner:

(1) The state vector update, is achieved by using the
vector function f of equation (6-15). Thus, the equation
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x t / t )  = _ (x t / t l ) I, t ) ( - 7

is integrated for tk < t < + resulting in "(t/t

(2) The matrix

6f(x(t) ,t) (6-18)
F(x(t) ,t =

6 x

ix(t) = x(t/t k )

is calculated.

For the rest of the chapter, F(x(t),t) will be lenoted F(t),
f(x(t),t) will be denoted f, and x(t) will be denoted x for the
sake of convenience.

(3) The transition matrix (tk+1 ,tlc ) is calculated
us ng

SF(t)O t,tk)

where tk < t <tk+ and *(tktk) is the identity matrix.

(4) The state noise covariance matrix 0* is calculated
us ng

tk+1

Q*(tK+I) J * (tk+ 1  t)G(t)Q(t)GT(t)#Tt k+l ,t)dt. (6-20)

tk

(5) The measurement matrix H(tk+l) is calculated by

8h (6-21).
H(tK*,) =

01x
x = ^(t /tk)

where >(tk+l/tk) was obtainea in step (1).

The update is not ready to be performed. To obtain the gain
matrix K(tk+l) , first extrapolate the state covar iance matrix
using equation

P(tk+l/tk) = *(tk+l,tk)P(tk/tk)# T (tk+ltk) + G*(tk+.. (6-22)
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Then

K(tk+l) = P(tk+l/tk)HT(tk+l)(H(tk+l)P(tk+l/tk)HT(tk+l) + R(tk+l)] ] .

(6-23)

The state update is then

(tk+ /tk+1) = "(tk+l/tk) + K(tk+l)[(tk+ 1) - h( (tk l/tk), tk)]

(6-24)

Equation (6-24) gives the desired update at time tk+1. To com-
plete the filter update, compute the state covariance matrix at
'time tk+1 by

P(tk+l/tk+l) = [I - K(tk+l)H(tk+l)]P(tk+l/tk), (6-25)

where I is the appropriately sized identity matrix.

Further modifications of the basic Kalman filter equations
are possible and often necessary for the proper functioning of a
Kalman filter. If the noise vectors are not zero mean, the state
vector may be expanded to solve for bias estimates. If the noise
sequences are not white, shaping filters may be used. If the
noise statistics are unknown, adaptive estimation schemes may be
added to determine these statistics. If computer word length
affects the numerical stability of the filter, square root type
filters can be written. The literature is filled with such
Kalman filter applications and more are being added every dLy as
Kalman filters are used to solve harder and harder probiems.

A disadvantage of the extended Kalman filter is that the
Kalman gain K(tk+l) and the error covariance update matrix
P(tk+l/tk+l) must be computed in real time. They cannot be
precomputed before the measurements are collected and stored in
computer memory as can be done when using the basic Kalman filter
because K(tk+ 1 ) and P(tk+l /tk,1) are both dependent on
i(tK+i/tk). In equations (6-23) and (6-25), it is seen that
H(tk+l) is needed to calculate K(tk+ 1) and P(tk+l/tK+l;.
H(tk+l), given in equation (6-21), is dependent on x(tk+l/tk).
H(tk+ 1 ) is actually shorthand for H(A(tk+l/tk)). Needed is the
estimate update, and hence the measurements themselves, to cal-
culate the Kalman gain and the error covariance update.

After the extended Kalman filter is designed, a sensitivity
analysis" is sometimes performed. A sensitivity analysis com-
prises a set of analyses to determine the sensitivity of the
filter design to any possible differences between this suboptimal
filter and a filter that fits the optimal mold exactly.
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References I and 2 discuss solutions to several of the
problems mentioned In the preceding paragraphs. Since the
discussion here was limited to conventional real-time Kalman
filters, the reader may also wish to consult -2ferences 1 and 2
for a state-of-the-art exposition on post-flight Kalman smooth-
ers.

6.4 Example

A simple example will Illustrate an extended Kalman 4itter
as described in paragraph 6.3. A moving target is tracked by N
stations, each measuring at times tk , k=1,2,..., m, the dia3tance
of the target from the station. Estimate the target's position
and velocity at time t., l<JSm, using all the range measurements
up to and including thoso at time t .

In this example, the state vector x(t) is chosen to be the
six-vector consisting of the position and velocity of the target
in a geocentric coordinate system, so

x(t)

y(t)

x(t) z(t) (6-26)

vx(t)

vy(t)

vz(t)

The continuous dynamic mc 191 corresponding to equation (6-15) is

_(t) = f(x(t)) + G(x(t))w(t) (6-27)

where

vx(t) 0 0 0
vy(t) 0 0 0

f(x(t)) vz(t) G(x(t)) = 0 0 0 (6-28)

0 1 0 0

0 010

0 0 0 1

and

ax(t)
w(t) = ay(t) (6-29)

az(t) j
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where ax, ay, and az are Gaussian white noise eriors, Triev can
also be considered geocentric components of targut accelerat ion.
Of course, f(x(t)), G, and w(t) could have been assigned other
values to satisfy equation (6-27). In real-life situations,
however, the vFi.jes assigned to f, G, and w are as given above.

The initial conditions (to ) and P(O) are assumed to be
provided before time t 1. A simple (and usually inadequate)
method is to take three ranges prior to time t I anc triangulate
to get (to), ( , and z(t0 ) and set vx(t O) = vy(t O ) = vz(t O )
0. The 6x8 matrix P(O) can be chosen to be diagonal with values
on the main diagonal to reflect the filter designer's confidehce
or lack thereof in the method of determining ^(to). (Generaliy,
the greater the confidence, the larger the values.)

The matrix Q(t) where coy iw(t),w(s)1 = Q(t)6(t-s) ;s
assumed to be a213, where 13 is the 3x3 identity matrix and a 2 is
chosen to compensate for unmodeled accelerations. The value of a
may be determined by subsequent tuning studies.

The measurement model is given in equation (6-16) as

Y(tk) = h(x(tk),tk) + V(tk).

For this example, the vector X(tk) is N-dimensional consist ng of
the N ranges available at time tk. For any i, l<i<N, the ith
component of h(x(tk),tk) is

(x(t k ) - X ) 2  + (y(t k ) - i) 2 + (z(tk )  - ZI) 2  (6-30)

where x(tk), Y(tk), and z(tk) are components of the state vector
at time tk and (Xi, Yi' Z) is the location of the ith tracking
station in geocentric coordinates. The matrix R(K) = cov
(v(tk).v(tk)l is assumed to be aiagonal with main diagonal
element i, 1<i<N, equal to the expected variance of the measure-
ments provided by the ith ranging station.

The measurements in this example are going to be processed
individually as described in paragraph 6.1. Hence, for each tk,
there are N measurements to process which satisfv the scalar
equation

yi(tk) = hl(x(tk)) + vi(tk), i = 1,2 ..... N, (6-31)

where

n (r (tk)) = (x(t k) - Xi) 2  + (y(tk) - y1)2 + (z(tk) - Zi )2

(6-32)
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The matrix R1 (k) o ovf i(tk),vi(tk) is then a scaiar.

Now proceed with the steps described in paragrapri 6.3.
These steps describe the quantities needed to estimate the
position and velocity of the target at time tk+1, given the
estimate at time tk1 and the measurements at time tk+I.

(1) The equation

X(t/tk) = ft^X(t/tk)) (6-33)

must be integrated ior tk :S t <tk+l to get A(t/tk). According

to equation (6-27), equation (6-33) is written out as

A A

v(t/tk) A0

vy' t/tk)
AA

vzx(t/tk) -0

To integrate the vector equation (6-34), this example begins with
the lower three components of the vector. The fourth component
of the vector equation (6-34) is

vxdt/tk) 0. (6-35)

Integrate equation (6-35) for *tk -< t -' tk(4.. to obtain

vx(tk+l/tk) = vx(tk/tk). (6-36)

Similar computations hold for V7y and $z. Since the velocity
estimate is constant over the interval ftk, tk+1111 the first
component of equation (6-34) can be rewritten as

Xlt/tk) = VX (tk/tk). (6-37)

Integrate both sides to obtain

tk+ 1 ftk+ 1

d~/ t V^x(t /tk J dt (6-38)
tK tk

so that

xk+1/tk) -x(tkltk) =vx(tk/tk)(tk+l tk) (-9
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or

X (tk+1 /tk) = X (tk/ tk) + V'X(tk/ tk) (tk+ I - tk) (-0

Similar computations yield ~(k1t) and z(k1t) (6-41)

Thus, the state vector time update equation is

(ttktk /tk+ tk)/
~k+1tk) I (tk/tk) + A(/tk)(tk+I - tk)

1 y(tk+l/tk) y tk/tk) +V^tkk)(kl-t
Z £tkl /tk) I (tk/tk) + v" (tk/tk) (tk+l - tk) I(-2

vz(tk+l/tk) ^ ('tk/tk)I[vy(tk+l/tk) I [VY#(tk/tk)
(2) The next step is to compute t;ne matrix F(t) of

equation (6-18). Using equation (6-27), the i,jth element of the
matrix F~t) is

1f_
Of f 1 1<i,j<6, (6-43)

ax Ji a (x) j

evaluated at X = (t/tk) . For 1<i<3 and 1<j<3,

0(f) Ovx (t)
is of the form ,(6-44)

C1(x Ox(t)

which is zero, since velocity Is not dependent on position.

For 1<i<3 and 4<J!6, if i # J,

is o1 f the form ,~x t (6-45)

which is zero. if ij,

0I(f)i Ovx (t)
is of the form ,(6-46)

_1x IVX (t)



whioh is 1. For 4-ci<6 and all j,

CI(±t)
=0 (6-47)

a(x)
Hence,

F(t) 0 0 0 0 0 1 (6-48)

(3) The next stop is to compute the trandsition matrix
# according to the matrix differential equation (6-19) whicah is

where tk :S t < tk+l and 0(t k, t is the 6x6 identity matrix 1 6.
The solution to equation (6- 9Y is

tk+ I

f F (t)dt
tk

f(tk+ltk) e

= 6 +j 1 ~F(t)dt + 1/2 [fJtk+1 jd 2+

(6-49)

"k+l

Then, since f F(t)dt
tk
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0 0 0 (tk+1-tk) 0 0

0 0 0 0 (t k+1- tk) 0

= 0 0 0 0 0 (tk+1-tk)

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

tk+1 n

and (j F(t)dt) is the zero matrix for n>1,

tk

1 0 0 (tk+l-tk) 0 0

0 1 0 0 (tk+l-tk) 0

#(tk+l,tk) = 0 0 1 0 0 (tk+l-tk)

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 0

(6-50)

(4) The next calculation is equation (6-20) to obtain
the state noise covarlance matrix Q*. To evalyate ,quation
(6-20), compute the product #(tk+ 1,t)G(t)Q(t)G M(t) (tk+ l ,t).
Ricall that in defining the dynamic model, it was assumed Q(t) =
o13. Furthermore, the matrix G may be partitioned as 103 1,

1 3J

where 03 is the 3x3 zero matrix. Then

G(t)Q(t)GT(t) = 2  03 13
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= 03 C)1 (63

Then, if D tk+l - t, then

T13 D I 3  0 00(klt)G(t)Q~t)G' (t) I
03 13 03 a2f3

0~ a2 Dl3

03 2i

and

t)~)~)T(t)T(t~t !3 a2Dl 3  13 03
A k+1 't) ~ ) ~ k+1 1t 03aj 1

=~, DI c1D3 aD

a2Dl13  2  J
(6-52)

To evaluate equation (6-20), the integrals of the four blocks of
the partitioned matrix 2 (-52) are calculated. For every nonzero
element in the block cr D 1.39

tk~ltk+ 1

J k+I2D2dt = J a2(tk - t)2dt
tK t

= J2 t (t k+l 2 2 tk+lt + t2 )dt
tk

= a2 tk~. 2 t -tk+ It 2 + t3 /3) LK+i
IK

= a(t +1- tk.l'tk - tk+l + t k+l tK 2 t k+I 3/3 t tk3/ 3)
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= r 2 tic2 _ tl 3/3 )
02 (tk+13/3 - tk+ 1 tk + tk+ 1

= U2(tk+1 - tk)3.

(6-53)

Hence,

tk+1
2 D2 2 dt = )3 (6-54)

tk 3

Similarly,

tk+ 1

" D 3 dt = a2(+ - )2,3,
tk 2

and

tk+1

f 213 dt = 2(t+ 1  - )13 (6-55)

tk

Thus, I (1/3) (tk+l1tk) 3 13 (1/2)(tk+l-tk)2 13
(1/2)(tk+l-tk) 2 13 (tk+l-tk) 3

(6-56)

(5) This step defines the measurement matrix for the
measurements at time tk+1. In processing the measurements indi-
vidually, for each tk+1 there are N matrices HI(tk+l), i1,....
N. Each H i is defined by equation (6-21) as

Oh
Hi(tk+1) = - (6-57)

X = A (tk+1/tk),

A

where h, is defined in equation (6-32) and x (tk+l/tk) was ob-
tained in step (I). The matrix H, is defined by equation (6-57)
to be 1x6. The first component of H i is
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C1rI ( (x(t) - 2 + (y(t) y 2 + (:(t) - z

ax(t 8x(t)

x(t) -X i

I (x(t) - Xi) 2  + (y(t) -
) 2  + (z(t) zi ) 2

AA

which, evaluated a t _X(tk+l/tk) is

(x~tk+i/tk) - XI)

x(t /tk 2 + (Y(tk/tk) -
) 2 + (Z(t /t ) -Z )'

(6-58)

Similar calculations can be made for y and z. Since n i :s
not a function of vx, vy, or vz, then

8- --- O - 0 for I = 1,...,N. (6-59)
*Vx avy 0Vz

Hence, if r denotes the denominator of equation (6-58), the
measurement matrix H I, i 1,..., N, is

[((k+1/tk)- I Ytk+1/tk)-Yi) ( (tk+11/tkc)-Zi) 0 001
H I (tk+ 1 ) = ... .... ..

r r r

(6-60)

Now al I the values have been obtained tha t are needed to
update the estimate of the position and velocity of the target at
time tK+ 1 , given the estimate at time tk , and the measurements at
time tk+1. Assuming that the initial values ,(t0 ) and P(CO) are
given, then the following sequence will give the Kalman filter
for this example. This sequence can be used to write the filter
program, in FORTRAN for example, with steps (1) through (5) as
subroutines which are called at the appropriate times in the
sequence.
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First, extrapolate the state vector j(tk/tk) using equation
(6-42) in step (1). Also extrapolate the state covariance matrix
P(tk/tk) using equation (6-22). For this, l(tk+i, tk) is needed
from step (3) and Q*(tk+l) from step (4).

The data at time tk+ I is input as an N-vector y(tk+1).
However, process the measurement from each station individually.
To do so, process them in sequence by considering each measure-
ment yi, i=1,...,N as a one-dimensional measurement vector. Then
go from y, to y1+1 in a similar manner as going from I(tk) to
Y(tk+1). Once the calculations of all the yi's have been com-
pleted, the measurement vector for time tk+1 will be known, which
is designated as

Y(tk+l) = (Y1, Y2 -. . . . .  YN
) '  (6-61)

Now, begin the sequence of measurement updates for time tk+ ! with

Y1.

The gain matrix is computed using equation 16-23). The
matrix H1 from step (5) is used here. Note then that the result-
ing K(tk+ 1 ) will be the first of N gain matrices, denoted
Ki(tk+l), i = 1,...,N and that they are all 6x1.

The measurement update of equation (6-24) is then completed
for the one-dimensional vector yl, using yl as the v(tk+1 ) of
equation (6-24), and plugging h1(M(tk+l/tk)) from equation (6-32)
into the h((tk+l /tk),tk) of equation (6-24). 1he output
(tk+l/tk+1) will be designated as l(tk+l/tk+1) to indicate its

calculation from measurement yl. The covariance matrix is also
updated, using equation (6-25) and resulting in Pl(tk+l/tk+l).

Only the last three steps consisting of gain calculation,
measurement update, and covariance update are repeated for
measurements Y2, Y3,..., YN" No time update is needed because
these measurements are all at the same time as y,. Thus, for
measurement Y2, x(t /tk) is replaced in equation (6-24) by

!(tk+l/tk+l), and Ptk+l/tk) is replaced in equations (6-23) and
(6-25) by Pl(tk+l/tk+1), since A:, and P1 are the best estimates
currently available. The output of equation (6-24) will then be^2(tk+l/tk+l) and that of equation (6-25) will be P2(tk+l/tk+1)
These three steps are repeated until N(tk+l/tK+l) is obtained
which is the estimate of the target's position ana velocity at
time tk+1 given all the measurements up to and including those at
time tk+1, and PN(tk+l/tk+l) which is its corresponding covari-
ance matrix. The updates have now been completed for the (k+l) s t

time point.
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CHAPTER 7

FILTERS IN CURRENT RANGE USE

This chapter contains a description of some of the most
frequently used filters. The filters sar,pled from the survey
provide a good cross-section of range data applications, and no
attempt has been made to select a filter which is best for any
application. There are seven least squares filter applications
in use identified by the survey, and probably several more that
were not identified. Discussion of several variations of the
least squares filters is given in this chapter. Also discussed
is the Quadratic Digital (QD) filter which has been in use for
many years, and at the time of the survey, there were five QD
users. The originator of the QD filter is Mr. W. A. McCool,
White Sands Missile Range (WSMR). A section on the Digital
Filter X (DFX) Is included to provide support for the QD filter.

Appondix A contains a summary of filter information based on
a survey of the Data Reduction and Computer Group of the Range
Commanders Council. The appendix essentially contains all of the
information received. In addition, the appendix provides areas
of application used at the contributing ranges and observations
about the suitability of the filters.

7.1 Least Squares Fllters

There are numerous filters based on least squares. In this
section, one basic and most widely used least squares filters is
the least squares polynomial moving arc filter. Although the
simple average filter is not usually recognized as a type of
least squares filter, it is addressed here. The least squares
methods described throughout the rest of the chapter are varia-
tions of the least squares polynomial moving arc filter.

7.1.1 Simple MovIng Average Filters

Simple moving average filters give the average of the N most
recent observations and are equivalent to fitting a zeroth degree
polynomial evaluated at the midpoint. The formulation is quite
elementary; it is

Xt + xt_1 + ... +Xt_.N+1

Mt = (7-1)
N

xt - xtN
= Mtr_ 1  + ,

N
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This filter is very simple and straightforwara and is useful for
observing a constant process. However, if the process is chang-
ing, a small value of N is needed for rapid response.

The following is an explanation of a simple moving average
filter as a least squares filter. It is assumed that the average
is a constant value (call it a) expressed in terms of the parame-
ter in consideration (call it x). The problem starts out with
the simple equation

x = a (7-2)

The problem now is to find the value for a so that the N
data points xtN+1 ...... xt collectively deviate from equation
(7-2) as little as possible (in the least squares sense). Then,
to find the best least squares estimate for a over the last N
values of x, the value

t
S = Z (x1-a)

2  (7-3)
i=t-N+1

must be minimized.

Taking the partial derivative of S with respect to a,

as t

- = 2 1 (x i - a) 0 (7-4)
aa i=t-N+l

It can be seen that S is minimized when

t
x, = na (7-5)

i=1

from which it is found that the best least squares e-itimate for a
is

t

I x1
i=t-N+1

(7-6)

N

the average value of the parameter at the most recent N points.

7.1.2 Leat Squares Polynomial Moving Arc Filters

Least squares polynomial moving arc filters are based on the

assumption that the true function oan be expressed over a finite
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span of time by a polynomial of fairly low degree and that the
errors in the measurements are random with zero mean and finite
rms value r.nd are serially uncorrelated. Noted here, the smaller
the time intervals are, the less the degree the polynomial needs
to be to provide a good estimating curve for the data. A sam-
pling interval of .05 seconds is said to be sufficiently small
for good data fitting. It Is desired to solve for the coeffi-
cients of the polynomial which best fits the data in a least
squares sense, that is, to minimize the sum

n
S = i=1 (ao +  alti +  a 2 t

2  +  ... + adt d  - v )2 (7-7)

where

ak, k = 0, 1,...,d are the coefficients of the polynomial of
degree d

t, = time of each sample referenced to the midpoint of
the span under consideration.

Yi = sampled measurements

n = number of points in the span (constrained to be odd
and greater than d).

To minimize S, take the partial derivatives of S with respect to
each ot the unknowns, ak, and solve the resulting set of d+l
linear equations. In matrix notation, write this as

CA = B, where (7-8)

n i+j-2
C is composed of C = E tk , i=1, 2,...,d+),

k= j=1, 2,...,d+l

A = (ao , al,.. .,ad) T , and

n
B is a vector with elements b, E Yktk , =1, 2.....d+.

k=l
" a Td

Then A = C-1 B. If the polynomial a0  + alt + a..t- + ... + ad

reoresents position, then velocity and acceleration are found by
taking the derivatives of the polynomial with respect to time.

The vector A of coefficients has been foun.g for the first n
time points. Normally, the polynomial w;th these coefficients is
appliled just to the midpoint of the time span. The first (n-l)/2
points are generally used just for finding the new data value for
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the midpoint, but new values may be generated (using that polyno-
mial) for the first (n-1)/2 points also. Once the new midpoint
data value has been found, the next step is to redetermine the
coefficients of the polynomial using points 2 to n+l, so a new
data value for the new midpoint can be found. Repeat this
process until finished with the polynomial moving from points
m,...,m+n-1 to m+l,...,m+n with each step (where m ranges from 1
to the total number of time points minus n), thus describing a
moving arc.

If the data are sampled at equal'y spoed intervals of time,
the t can be considered to be unity and C s uniquely deter-
mined when d and n are chosen. By use of C-1 and t i, a set of
weights can be computed for determining the ak such that

n

ak Wki y N-n+i, where (7-9)
i=1

N is the subscript of the last point in the span.

These weights are useful for determining the expected error in
position, velocity, and acceleration for data with known input
error since

Ga

k n
w= ( k 2)1/2 (7-10)

y i=1
y

It is assumed that the standard deviations of all the measure-
ments yi are the same, and it is called a . Thus the sampling
interval can be chosen, as well as the number of points smoothing
and the degree of the polynomial which will accomplish the
desired results, with a minimum expense of computational effort
(see reference 3). There are methods of calculating C-1 that do
not entail finding the Inverse directly, which would be very
time-consuming. One of these methods will be discussed later in
this chapter.

An advantage of using a polynomial is that much need not be
known about the true process, because if the polynomial Is of
high enough degree, it will tend to seek out the signal In the
presence of noise and give a reasonable estimate of It. For this
reason, the higher degree of the polynomial, the more flexibility
is allowed in accurately constructing the true process. Another
reason is by using least squares, the polynomial is not forced to
pass exactly through any of the observations, which would result
in a certain amount of smoothing.
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7.2 Position and Velocity Constrained Lest Squars Filters

Position and velocity constrained least squares filters are

based on the philosophy that the best estimate of the true
function and its derivatives can be obtained by fitting a polyno-
mial to fixed time spans of the measurements by the method of
least squares while Imposing constraints on the polynomial which
force continuity between successive spans. The assumptions
concerning the data are the same as for least squares polynomial
filters, but the additional requirement is made that the polyno-
mial being fit to the filter span must pass through a point on
the previous curve with the same slope. For example, consider
fitting a quadratic to data sampled at evenly spaced Intervals.
Suppose there 3re five points in the span, that the midpoint of
the span Is at t=O, and that each point in the span is one unit
apart from the one next to It. For the first span, the time
values are t i , i=1,...,5 where tin i-3. It would be desirable
to have

2 (7-11)
9 i = 0 + alti + a2 t i

evaluated at i=3 to be the filtered data value for the midpoint.
Thus, the filtered data value is equated with aO , since t3 = 0.
Once aO , a,, and a2 for this span have been solved for using the
regular least squares method, the first step is completed.

The next step is to solve for 9 i at t i = 1. Move the span
one point over so that the new spanIs for points i=2,...,6. The
new midpoint is at i=4. Remember there are two constraints:
position and velocity. Note now that t4 is the middle time value
for the new span. The idea of the filter is that the polynomials
of both spans have the same value (position) and the same slope
(velocity) at time t4.

For both the old and new spans, consider the middle time
value to be 0 and the following time value to be 1. So for the
old time span, t3 = 0 and t4 = 1. For the new time span, t3 = -1,
t4 = 0, and t5  1. Let

p(t 4 ) = a0 + a1 t4 + a2 t4  (7-12)

be the polynomial for the midpoint of the new span, and let

2
q(t 4 ) = a0 + a1 t4 + a2 t4  (7-13)

be the polynomial for the same point of the old span. Use the
position constraint to obtain a& and the velocity constraint to
obtain a' 0

7-5



7.2.1 Position Constraint

Because p(t4 ) is for the midpoint of the new span, the

method equates t4 to 0, so that p(t 4 ) takes on the value
Because q(t 4 ) Is for the point to the right of the midpoint of

the old span, the method equates t4 to 1, so that q(t 4 ) assumes
the value so + a, + a2 . To ensure that these two polynomials

have the same value at t4 , equate .f with a0 + a1  + 2" Now the

value has been found for the first coefficient for the new span.

7.2.2 Velooi ¥ Constraint

Again, consider the polynomial p(t 4 ) for the midpoint of the

new span. The slope for this polynomial Is a' + 2a2 t4 . Because

this slope is for the midpoint of the new span, the method

evaluates this slope at t4 a 0, whence the slope takes on the
value af. Also consider the polynomial q(t 4 ) for the same point

of the old span. The slope for this polynomial is a1 + 2a 2 t4 .
Because this slope is for the midpoint of the old span, the
method evaluates the slope at tel, whence the slope assumes the

value a1 + 2a 2 . To ensure that the slopes of these two polyno-
mials have the same value at t4 , we equate a1 witha + 2a 2. Now
the value has been found for the second coef icient of the
polynomial for the new span.

So from the position constraint,

s0 =ao + a1 + a2  (7-14)

and from the velocity constraint,

aj = a, + 2a 2 . (715)

Now proceed to find the value for a2.

Start by minimizing the sum

N o+ai+a2t i - yi)2 (7-16)

i=ZN-n+ 1

where

aO , a1 , and a2 are coefficients for the second span

n = number of points in the span (should be odd and

greater than 2; in this case, n=5)

N = subscript of last point in the span (in this case,
N=6)
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= time of each sample referencea to the midpoint of
the span such that t i - ti_ 1  I

v i = sampled measurements.

Taking the partial derivative of S with respect to the unknown.
a2, equat Inp it to zero, and solving for a2 gives

2 2 a;
a2 1 (E Yiti - a Z ti- a I t!, (7-17)

t4
I

Similarl/ to the first span, the filtered data vaiue for the
midpoint o+ the second span is

0 0 2
y = ao + a l t i + a2 t i  (7-18)

evaluated at i = 4. That is, equate the filtered data value with
a' , since t4  0 0. The subsequent steps are done in the same
manner as the second step. Sometimes it is desirable to con-
strain position only to be obtained from the previous fit. In
this case both a' and a' in equation (7-16) are unknown, and the
solution would involve two equations with two unknowns.

This method has a distinct computational advantage over
unconstrained least squares, because there are fewer summations
and simpler equations. It also produces smoother output because
of its recursive nature. However, it is slower to react to a
change in the input and under certain conditions results in
oscillation in the output.

7.3 Orthogonal Polynomalll

in smoothing data by the usual method of least squares, it
is necessary to choose in advance the degree of polynomial which
will be used to approximate the data. This choice is necessary
because the coefficients found are dependent upon the degree of
curve oeing fitted. Often, however, it is not Krown in advance
what degree curve will best fit the data. In such a case, it is
desirable to fit several polynomials, each time ,ncreasina the
degree used, until it is seen that any further increases woulo
not produce a significantly better fit. The cornoutation of
successive polynomials is greatly simplified by the use of the
orthogonal polynomial procedure. This method determines the
approximating polynomial in terms of another variable, so chosen
that each coefficient found is independent of the others, making
it possible to increase the degree of curve used without making
it necessary to recompute the previously found coefficients.
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This program is generally used to smooth position data. The
degree of curve fitted is increased until an F-test indicates
that additional coefficients of the polynomial would not be
significantly different from zero. The smoothed positions are
then differentiated to obtain velocities, and the velocities
differentiated to obtain accelerations. The error estimates of
the smoothed data and derivatives are computed in the form of
standard deviations for each point. Coefficients of the original
polynomial are derived in terms of the new polynomial. Orthogo-
nal polynomials are discussed In reference 46. The method Is
given here. First, the term "orthogonal polynomials" is defined.

Two polynomials PI(x) and Pj(x) (of degrees i and j) are
orthogonal on a set of points Xl,...,xn provided that

n
I Pi(xk)PJ(xk) = 0 for ij. (7-18)

kal

Given a polynomial of order k, k orthogonal polynomials can be
found whose linear combination expresses the original polynomial.
The method of orthogonal polynomials follows. Assume that the
polynomial

p(t1 ) = a0 + ait 1 + 2 +. + k (7-20)

expresses thq true function. Reference 46 shows directly and by
example that this polynomial may be re-expressed as

p(t,) bWOO t + biPit +..+ b2P 2

where Poti =
I

P ,ti = t

PJ't= tP.J Qj P 2
j-2,1

b0 =

where Q.= Pt (7-21)
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The time variable t i ranges from -(N-1)/2 to (N-I)/2 in steps of
one. (The index i could have been used insteac of t b, Out t is
the more conventional variable for time.) Reference 46 shows

that the PJ ti's are orthogonal to each other.

Once the original polynomial of equation (7-20) has been re-
expressed in terms of orthogonal polynomials (in equation
(7-21)), p(t) can be expanded to be of one more degree through
the Gram-Schmidt orthogonalization process,

where

n
I Pi(xk)Pj(xk) is the inner product and (7-22)

k=1

where the polynomials Pi(x) and P(x) are vectors in the vector

space of polynomials spanned by 1,x,x ...,xn, where n is the
degree of the higher degree polynomial. In this manner, the
values of any of the previously obtained b-'s or P, -'s are not
changed. Instead, another such term is merely aaed on.

At what degree should expanding stop? Reference 46 suggests
a clever criterion for deciding when to stop. Tne variance V of
the data can be expressed in the following two ways:

(N-1)/2 k i 2

t (t a i t il - yi)

2 i=-(N-1)/2 j=1 i
V = a

N - 2 - k

V = Q.(bj - B.) 2  (7-23)
b J

where b. is the computed coefficient and Bj is the true coeffi-
cient. Reference 46 gives the derivations for the last two

2 2
equations. Of course, a = b' but two different notations are
given for the sake of future reference. The object now is to

tes' the hypothesis that the true value of the jth coefficient B
is zero. Test the hypothesis using an F-test. (The F-test tests
the proportion of two variances.) Test the prooortion,

B 0 (7-24)
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2 b2  I j i d a ,teOf course, the numerator b 2 dall 0 then

Bj =0

this proportion should be close to 1.

In the test, If

2ab

B =0 < F, (7-25)

2
0ra

then the hypothesis is accepted as true, and bi is set equal to
zero. The next coefficient is tested in the same mahner. When
two consecutive coefficients are set equal to zero, then the
degree k of the polynomial Is determined from the last coeffi-
clent which was not set equal to zero; that is, k=J-2.

Stopping after two consecutive zero coefficients assumes
that succeeding terms in the polynomial will carry negligible
weight. For practical purposes, most parameters can be modeled
using a lower-order polynomial. If the polynomial Is of higher
degree, the higher coefficients are close to zero. Normally,
data generally does not shoot up or down suddenly enough to
warrant higher degree, high-magnitude coefficients.

7.4 Least Squares Polynomial Moving Ara Filters Usina Reoursive
Sums

A recursive scheme for computing the sums required to
perform least squares polynomial moving arc smoothing has been
developed at the Air Force Development Test Center which permits
this type of smoothing to be accomplished considerably faster
than by the usual linear combinations of observations. This is
not a recursive filter in the usual sense in that previous filter
output is not used in determining current output.

In paragraph 7.1 it was stated that the equation for this

type of smoothing may be written in matrix notation as

A = C 1 B, (7-26)

where the elements of A, B, and C have been previously defined.
Each element of B and C consists of a summation of n terms (n =
number of points smoothing) which must be performed each time a
point is dropped and another is picked up in the moving arc
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process. However, these summations can be avoided by computing
the sums for a given span in terms of those for the previous
span.

For instance, suppose it was found that through the method

discussed in paragraph 7.1

(1) n i-i' tk = Tk - Tn+1 ' (7-27)

b I Yk tk 2
k=1

where T i is the ith time value. So tk is the length of the
interval between the kthtime point and the midpoint of the sp i.

To find

(2) n+1 where & = - (7-28)
b. = Yk (tk - A)'where Tn+3 -Tn+

k=2 2 2

(1)
do so in terms of b i  by means of the recursion

(2) i-I (1) i-I i-j-1b. = £ (_A) j (i-)b + Yni (_A) j (i-1)

j=O i- + Yn+1j=O n+1

(7-29)

j=O 1

The elements of C are computed similarly by considering the yk=1.
However, as previously stated, if the data are evenly spaced, C
is uniquely determined when the degree of the polynomial and..num-
ber of points smoothing have been selected. In this case, C
can be precomputed and stored for use in the smoothing. In
addition, A can be considered unity, and the equations for the
recursion are simplified.

With this formulation no lengthy summations are required and
the number of operations, once initiated, is independent of the
number of points used in the smoothing. Furthermore, by comput-

2
ing recursively t~yk , reference 63 shows that with very little

extra effort the residual sum of squares of each span can be

obtained as an estimate of the error in the data by

2 ATB. (7-30)
S= y-(3
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7.5 Derivative Information Recovery by a Selective Integration
Technique (DIRSIT)

The data smoothing technique known as Derivative information
Recovery by a Selective Integration Technique (DIRSIT) was
developed in 1962 at White Sands Missile Range. The technique
has been modified somewhat to permit more control of interval
program parameters to satisfy the requirements of a greater
number of users. The basic steps in the DIRSIT smoothing philos-
ophy are

(1) the sign of the difference between the raw and
smoothed position data is examined at each point within the
filter span;

(2) the smoothed position data is satisfactory if the
number of positive signs differs from the number of negative
signs by one; (The total number of signs is odd.) and,

(3) if (2) above is not satisfied, the acceleration
history within the filter span is modified as much as necessary
to force the difference to one.

It is assumed that sampled position data is being entered
with associated time. The output is smoothed position, velocity,
and acceleration with associated time. For the filter span 2m+1,
which is odd, table 7-1 shows a starting condition.

TABLE 7-1. A STARTING CONDITION FOR A DIRSIT
FILTER WHOSE SPAN IS 2m+1 POINTS

Raw Position Smoothed Position Velocity Acceleration

X1 X1 X11
X2) X2

Xm+ Xm+ 1

X2m+l X2m+1
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The parameters x 1 ' x1, xi, i=1,...,2m+l are generated during
initialization; consequently, the initial estimates are obtained
independently. Columns ;i and x i are computed as

xi+ 1  = x i  At i-i + 1/2) A t2x 1  (7-31)

i+l = xi + Ati+lxl (7-32)

where i=1,.. . ,2m+1; Atj+ 1  = ti+ 1  - ti

All accelerations 1i,i=m+l,...,2m+1 are equal.

Having completed the columns of table 7-1, examine how
closely the smoothed and raw positions agree. Generate m values
of xi by computing Ax i = x.- xi, i=m+l,...,2m+1. Hence, the
number of negative Ax. and the number of nonnegative Ax i cannot
both be odd, neither can they both be even. Let NL be the number
of Ax. which are negative; that is, the 7i is larger than the x,.
Let N be the number of Ax. which are nonnegative. NL + NS = m
and the Ax, (i=m+2,...,2m+1) are acceptable if INL-NS I > 3.
These conditions are corrected by changes in the
i=m+l,.. ,2m+1, which will also produce changes in the xi and '
i=m+2,... ,2m+1.

Examine the procedure for changing the *.i. To be specific,
assume that NS > NL + 3; then the x i must be increased. Starting
at some time t, the acceleration will be increased with slope 1,
to time tm+1 which will be called tp, the pivot ooint. Then for
times tp, tm+2 , .... t2m+1 the acceleration increase will be con-
stant. This type of increase in acceleration will just result in
a change in only ome xk so that Axk would just barely become
negative where formerly it was nonnegative. The first step is to
equate Axk as shown in the following equation:

Axk = (1/6) (tP-t) 3  + (1/2) (tp-t) 2 (tk-tp) + (1/2) (t Pt) (tk-tp)2

(7-33)

Note that the change in distance is obtained by a double integra-
tion of acceleration. First integration of figure 7-1 would
yield a velocity curve of the shape shown in figure 7-2.
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Figure 7-1. Example accelera- Figure 7-2. Corresponding
tion curve, velocity curve.

Where Area A = (1/6) (t -t) 3 , Area B = (1/2)(t -ti 2 (t -tp p K p'

and Area C = (1/2)(tP-t)(tk-tp)2  (7-34)
Axk = (1/6) ((t -t) 3 + 3(t -t) 2 (t + 2

P_ P_ (k-t p) + 3 (t Ct)(tk-t)]

(7-35)

= (1/6) [(tk-t) 3 - (tk-tp)3 3

from which (t P-t) = [6Axk + (tk-t p ]1/3 - (tk-tD) (7-36)

Thus, equation (7-36) gives the distance between t- and tP. This
change made in x, and the changed xk would decrease NS by 1 and
increase NL by 1. For each positive A&x , compute a 1i but only
the largest ilis used. Thus only one Ax i would change sign. For
this selected value of E, the changed ,i. xi, and x, are calcu-
lated for each time beyond T. A check is made again: if
NL-NS<I. then the output at t, of R, *. 9, is the output of
DIRSIT: if NL-NS>I, the above computation of 1 is repeated.

Suppose that NL > NS+3 or that the number of negative Ax. is
three or more greater than the number of nonnegative Ax, Under
these ccnditions equation (7-36) becomes

P-t) = [-6Ak+(tk-tp)]1/ 3  - (tk-tp) (7-37)
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To this point it has been assumed that tct 1 , when t>t 1

another procedure is employed. Increase the slope of the accel-
eration as shown in figure 7-3.

T>1

t T(t t

pp
t I  t p t k

Figure 7-3. Example acceleration curve for t > ti

T :6a Xk

(tk - t1 )
3 - (tk - tp)3 (7-38)

With this new value of T the new k i, xi, x,, i=2,...,2m+1
are calculated. If I NL-NS I=1, the data output is finished; if
not, repeat calculation of t. Now redefine terms by shifting
their previous values down one, that is, shift

ti+ 1  -- t i

x i+1 0 i

xi -.-- xi

The next nmta pont s npw ,o 1:t t the f u . -, -ae u.je

:Nrocess is repeated.

The DIRSIT was the or!gina rcal-tiate flignt f;lter at wSMR

and has been successfully used with data from such missile
systems as the Nike Zeus, ARPAT, Pershing, and Athena. The
filter has been used for Nike Zeus and ARPAT elevation data, to
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generate acquisition data, and to initialize a re-entry simuia-
tion in the Athena's real-time operational program. It is the
major filter being used at Holloman Air Force Sase ano WSMR to
evaulate the Athena re-entry data and is the prime source of
post-flight data for the flight safety impact prediction programs
at WSMR. The post-flight data is then used for vectoring recov-
ery aircraft.

Because DIRSIT, a self-editing filter, uses a median-smooth-
ing criterion, random spikes will have no effect on the filter
output. Operation is not dependent upon equal time increments
between data points, and a missing or repeated data point will
not cause problems. With existing subroutines, numerous internal
parameters can be controlled to obtain the desired filter re-
sponses. However, DIRSIT was not without its problems. Posi-
tion, velocity, acceleration, and time arrays must be stored,
thus reauiring a significant amount of storage space and comput-
ing time. In addition, the filter has a lag which makes it
undesirable for real-time use. (For additional information on
DIRST, see references 36 through 39.)

7.6 DigItol Filter X (DFX)

In 1963 at WSMR, real-time flight safety suoport was first
provided from the central computer facility. Originally, the

DIRSIT filter was used, but it became evident that DIRSIT was not
a satisfactory real-time filter because of the excessive storage
requirements, computing time, and inherent lag. Consequently,
the original version of the DFX filter was develooed. The DFX is
a variation of a constrained second-degree filter which defines
"best fit" criterion to be that the algebraic sum of the differ-
ences between the raw and smoothed data is zero.

The filter is more efficient in both speed and storage
reauirements because of a development which avoids computing the
constraints explicitly and which stores only the array of differ-
ences rather than arrays of both raw and smoothed data. Addi-
tionalty, a mean rather than a median smoothing criterion is
used. The filter response is controlled by a set of )nput
parameters which, in turn, determine the shape of the accelera-
tion correction curve. The smoothing criterion for the DFX
filter is

N
S = (Xl-Xi) = 0 (7-40)

'=1

win crl loads to

S = (Xo + 0 (i At) + O 1i 2  ht2) 0 X ) C0 (7-41)

i=1 2
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With the constraints X0 and X0 fixed, only the acceleration has
to be adjusted with each step

a I N t N
X0  2t12  X I - NX0 - X0 At Ei (7-42)

At2 I=I
2

Equation (7-41) differs from the constraine* Ilest squares (CLS)
equations only in the multiplying factor (I At ), and this

difference will affect only the computation o the correction
coefficients used by the filter. The method of applying the
correction to the acceleration terms Is the same for both a CLS
and DFX filter.

To see how~this method is d~veloped.,first look at the
expression for Xi+J in terms of X, where xk is the new data value
of xk rfter smoothing:̂

A

A A At2X1+1 Z X1 + Al (I At) + X1 (12 At2) (7-43)

2

(If xi+ I were expressed in terms of x i, At would be the step
size. in this case, consider I At to be the step size.) Rede-
fine terms by shifting down the values for the next cycle, so
that x of the previous step becomes what will be designated as
Rj In~he current step, where the bar indicates "prior to apply-
ing the correction factor."

This redefining of terms gives the following equation:

Xi= XO + AO (I At) + X0 (i2 At 2 ) (7-44)

2

Compare the previous equation equation (7-44) with the following
equation (7-45), which expresses the ith smoothed point based on
the constraints.

A 2

+Xi = Xo + -Xo (i At) + (12 At2) ('-45)

2

Subtracting equation (7-44) from equation (7-45)

A 2
(Xi - XI )  = (12 At2) (X0  - XO ) (7-46)

2
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which will be written as

(X, -x, = (i 2  At 2 ) (6X0 )  (7-47)

2

or

Xi = Xi + ( i 2 At 2 ) aXo (7-48)

2

That is, the smoothed position at the ith point equals the
position before correction plus a constant factor depending only
on the delta time increment and the position of the ith point in
the N point span times the correction to the acceleration. The
significance of this fact is that if there are predicted outputs
and a means of computing the acceleration correction, then there
is no need to compute the constraints explicitly or save arrays
of both raw and smooth positions. Note that equation (7-48) can
also be written

(Xi - Xi) = (XI - Xi) + (i 2  At 2 )  6X0  (7-49)

2
or

Ax i = Ax i + i2 At 2 ) SX0  (7-50)

2

N
The quantity E AX i is set to be zero as the smoothing criterion.

i=1
A

The array AXi can be used instead of the two arrays X i and
X i for computing each cycle. The AXi's, which are the differ-
ences between predicted and raw input at each time are saved,
shifted down, and corrected after each succeeding computing
cycle. As each AX, is operated on in successive computing
cycles, it becomes numerically smaller. Most of the correction
is applied to the AX i at the cycle when i=N, the real-time span.
This factor, it will be seen, is what makes the OD filter possi-
ble. Performance is almost identical to second order CLS smooth-
ing; however; DFX requires much less computation time and storage
regardless of the span size. In addition, filter characteristics
can be changed dynamically during flight to improve performance.
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The basic DFX package includes editing, initialization.
radar selection, and noise estimate routines. Versions of this
filter were used in all WSMR real-time programs for over five
years. References 40 and 41 are concerned with the DFX filter.

7.7 Quadratic Dia;tal (QD) Filter

The DFX equations can be derived using the CLS smoothing
criterion. If an approximation is made concerning the effects of
the terms of thr =ums of products, the necessity of even one
stored array is eliminated and the second order DFX formulation
can be reduced to a set of six equations. The performance of the
resulting (OD) filter is practically identical to CLS perfor-
mance, although computing time is independent of the filter span.
In reality, the QD filter span is implied rather than actual
because no arrays are stored. The QD filter is essentially a DFX
filter which applies all the corrections needed to the real-time
point only.

The QD formulas employ a predict-correct procedure using the
estimates determined for the current given data value evaluated
in the preceding step. They are, therefore, said to be recur-
sive. The prediction formulas are

A

Xn+ 1  = Xn  (7-51)
A A

n+i = n + At XnP (7-52)

AA

Xn = n+ tX + At2 (7-53)
n+I An n no

2

or

AA

A

Xn+- Xn + At (an+i + Xn) (7-54)

2

where

;nl- is predicted second derivative,

Xn - second derivative estimate from preceding step,

- predicted first derivative,

An - first derivative estimate from preceding step,

Xn+1 - predicted data value,
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A

X n - data value estimate from preceding step, and

At - time differential from preceding step.

The corrections of the predicted values are based upon the
differences between the given data and the predicted data values.
The correction formulas are

Xn+1 - Xn+l+ K Ax, (7-55

n+ I = Xn+1 + K2 AX, (7-56)

Xn+i Xnl + K3 Ax, (7-57)

where

Xn+ 1 - correction of the predicted second derivative,

A

Xn+1 - correction of the predicted first derivative,

Xn+l - correction of the predicted data vaiue, and

Ki, K2 , K3 - correction coefficients which minimize the error of
the estimates:

AX - difference between given and predicted data values.

The functional relationship among the correction coeffi-
cients K1 , K 2 , and K3 are revealed through study of predicted
values obtained by use of the second order CLS filter. In the
CLS filter, intercept and slope constraints are applied at the
oldest value end of a given data span M, so that the polynominal
fit to the M data values in the least squares sense must also
contain the estimates of the true value and the corresponding
first derivative at the oldest span point. Using these con-
straints in the second order CLS filter, the predicted data value
and its derivative can be obtained with the truncated Taylor
ser ies:

AA e

Xn+1 x An-M+1 + M~t X-+1 (7-58)

Xn+l =Xn-M+i + MAt XnM+1 + (M At)2  XnM+l. (7-59)

2
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where n-M+1 indicates the oldest value in the fiiter span, having
been shifted from~its position in the preceding step of n-M+2.
Since XnM+I and An-M+l are fixed (because the position and
velocity are constrained), only On-M+1 can be adjusted to make
equation (7-59) fit the M data values in the least squares sense.
Let AR be the required correction, Then

A A

Xn+l = Rn-M+1 + AR (7-60)

Note that the second derivative is constant across the second
order CLS filter span. Applying the correction to equation+Ins
(7-58) and (7-59) holding XnM+1 and XnM+1 fixed, gives the
estimates

A
An+l = Xn-M+I + M At(Xn_M+ + (M (7-61)

Xn+I ' Xn-M+1 + M AtAn-M + (Xn-M+1 + AX) (7-62)

2

Subtracting equations (7-58) and (7-59) from equations (7-61) and
(7-62) gives

A = n+ + M At AX, (7-63)

Xn+ = Xn+I +(M At) 2  Ax. (7-64)

2

Comparison of equations (7-60), (7-63), and (7-64) with equations
(7-55), (7-56), and (7-57) reveals the relationship between K1 ,
K2, and K3 as desired. From equations (7-55) and (7-60)

AR = K1 AX (7-65)

Then from equations (7-63), (7-56), and (7-65),

K2 = MAtK 1  (7-66)

and from equations (7-64), (7-57), and (7-65),

K3 = (MAt) 2  K1  (7-67)

2
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In the QD theory, K, is developed as a function of the corre-

sponding CLS filter span M, that is,

K K(M) = 60M 2  7-681

10M3 + 33M 2 + 23M-6

(See reference 45 for the derivation of this formula.) Thus,
when M is arbitrarily specified, the QD correction coefficients
are determined by equations (7-66), (7-67), and (7-68).

In its basic formulation, QD can be used as a real-time
filter, because the argument (or subscript) of the estimates
corresponds to the latest value accepted by the filter. On the
other hand, estimates can be obtained for tne data value at the
oldest end of the span which are significantly oetter than the
corresponding real-time estimates. Such estimates, which are
often called "'smoothed" data, correspond to the constraints
computed in the CLS filter. Smoothed estimates are simply
obtained with a Taylor series expanded about the real-time
estimates; that is,

X = Xn+ - (M-1) tXn+ 1  (7-69)

AA A A

n+ Xn+I (M-1) t (An+1 + Xn+ 1) (7-70)

2

for the second order QD filter and
AA A A

Xn+ = Xn+1 - (M-1) AtXn+ 1  (7-71)
A

= n+1 - (M-1) At (n+1 + n+1 )  (7-72)Xn+1 n+1

2

A A A

Xn+ 1  Xn+ 1  (M-1)ht (An+ + A )n+) (M-1)3 (AT) 3  n+1

12 (7-73)

for the third order QD filter.

The QD filter achieves smoothing effectiveness almost identical
to that of the comparable constrained least squares filter
without he usual array of saved input data samples. The QD is
the real-time filter used in the majority of WSMR operational
programs. References 42 through 45 discuss the QD filter in more
detail.
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APEP

1. Name or Acronym

Advanced Medium Range Air-to-Air Missile (AMRAAM) Parameter
Estimation Program (APEP)

2. Contact Mr. John E. Lindegren
3200 SPTW/KRTAR
Eglin AFB, FL 32542
(904) 882-4267
DSN: 872-4267

3. Documentation Sources

a. Bierman, G. J. Factorizatlon Methods for Discrete Sequential
Estimation. New York: Academic P, 1977.

b. Luenburger, D. G. Optimization by Vector Space Methods. New
York: Wiley, 1969.

c. Sorenson, H. W. Kalman Filtering Techniques, Advances in
Control Systems. Vol. 3, C. T. Leondes, ed. New York:
Academic P, 1966.

4. Origin Ball Systems Engineering (formerly VERAC,
Incor.-orated)

10975 Torreyana Road, Suite 300
San Diego, CA 92121
14 February 1982

5. Comments

Strengths of the APEP filter are described in the following sub-
paragraphs:

a. This filter provides optimally smoothed trajectory estimates
in the same sense as an extended Kalman filter but with superior
numerical accuracy because of echelonized square root information
matrices with Householder orthogonal transformations of augmented
state transition matrices. In addition, the matrices are partitioned
for dynamic and measurement bias states and make expl icit use of the
block diagonal matrix structure to minimize computation steps for the
sparse matrices.

b. The forward filter cycle is slightly slower than the standard
Kalman filter, but the smoother cycle (backward filter cycle) is sig-
nificantly faster than a standard fixed interval Kalman smoother.
Smoothed estimates require only back yard substitution, and smoothed
covariances are generated with a UDU decomposition of the filter
state covariances. Propagation of the smoothed square root informa-
tion matrices does not require matrix inversions.
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c. The procedure for "folding in" new measurements using House-
holder transformations to echelonize the measurement augmented state
equations allows inclusion of asynchronous or irregular measurement
data rates without reinitializing any of the filter solutions.

d. Trajectory propagation using the current filter estimates and
state transition matrices avoids dependency on any particular measure-
ment input.

e. All kinematic parameters are provided with 1-sigma error
bounds for the estimates, which require propagation of the error
covariances for Indirect parameter derivations.

f. Data dropouts of short duration or changes in the number of
available instruments are accommodated by APEP without catastrophic
filter/smoother estimate errors or failures.

g. A review of filter cycle measurement residuals allows iden-
tification of wild points for edit and adjustment of a priori measure-
ment covariances used in program input. (Automatic edit may be
selected for a multiple of the expected residual standard deviation.)
Deviations from the measurements error model used by the software are
indicated by correlated measurement residuals.

Weaknesses of the APEP are described in the following subpara-
graphs:

a. If no inertial navigation system (INS) data are available for
measurement Input, the square root inverse filter (SRIF) cycle may
have to be repeated to fine tune the a priori filter measurement and
state noise covarlances or to edit wild points which seriously perturb
the estimates in the state propagation steps.

b. The smoothing cycle requires reversal of read order for the
entire measurement interval, thus requiring all measurement data to be
stored on disk files or other random access storage media. The algo-
rithm uses fixed interval smoothing. The volume of data that can be
processed at one continuous time interval is limited.

c. Data-processing time is significantly longer than the data-
collection time interval if Time-Space-Position-Information (TSPI)
from several instruments and from the inertial data are included as
measurement inputs to the filter.

d. The present error model for TSPI instruments Include only
bias terms as the systematic error source. (The error model does
provide for the Markov noise model.) For the short time Intervals
associated with air-to-air missile flights, bias terms may provide an
adequate model. For longer time interval-, with large shifto in tar-
get range or angle relative to TSPI instruments, a more extensive
error model would be required to ensure stationarity for the measure-
ment residual.
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FAST LEAST SQUARES

1. Name or Acronym

Least Squares Moving Arc Polynomial Using Recursive Sums

2. Contact Mr. John E. Lindegren
3200 SPTW/KRTAR
Eglin AFB, FL 32542
(904) 882-4267
DSN: 872-4267

3. Documentation Sources

Sterrett, John K. "Manual for Moving Polynomial Arc Smoothing.
Ballistic Research Laboratory Report 840. Aberdeen Proving
Ground: Ballistic Research Laboratory, 1952.

4. Origin Ms. Martha D. Everett
AFDTC/KRBA
Eglin AFS, FL 32542

5. Coents

The filter accomplishes its designed tasks very well. By chang-
ing the time span or the polynomial degree or both, the filter can
be adapted to the trajectory, and by changing a single time constant,
the polynomial can be evaluated at the end point for post-mission pro-
cessing. No knowledge of measurement errors is required, and the wild
point edit is adaptive oecause the distance off the curve considered
defective is proportional to the noise in the data for the particular
time span.

This filter has one weakness. It cannot handle a step function
properly and thus filter gives poor results at missile booster igni-
tion, burnout, or similar occurrences.
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WEIGHTED LEAST SQUARES

1. Name or Acronm

Weighted Least Square& Smoother

2. Contact Mr. Mike Dodgen
Computer Sciences Corporation
6545 Test Group/ENAC
Hill AFB, UT 84066
(801) 777-6497
DSN: 458-6497

3. Documentation Source.

Mr. Mike Dodgen
Computer Sciences Corporation
6545 Test Group/ENAC
Hill AFS, UT 84056

4. Orlain Kentron International, Incorporated
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WLSRE in MIT026

1. Name or Acronym

Weighted Least Squares Recursive Estimation (WLSRE) contained in
Multiple Instrument Trajectory Module (MIT026)

2. Contact Mr. Robert Fierro
U.S. Army White Sands Missile Range
Attn: STEWS-NR-AM
White Sands Missile Range, NM 88002
(505) 678-2543
DSN: 258-2543

3. Documentation Sources

a. Fierro, Robert and Carolyn Nicholson. "Dynamic Optimized
Smocthing Span (DYNOS." Analysis and Computation Directorate
Document. White Sands Missile Range: Analysis and Computation
Directorate, 1970.

b. Comstock, D., M. Wright, and V. Tipton. "Handbook of Data
Reduction Methods." Data Reduction Division Tech Rept. White
Sands Missile Range: Data Reduction Division, 1964

c. Greene, Earl. "Edfil, A Routine for Editing and Filtering
Data." Analysis and Computation Directorate Document. White
Sands Missile Range: Analysis and Computation Directorate,
1977.

d. Comstock, D. "Introduction to Least Squares." Analysis and
Computation Directorate Document. White Sands Missile Range:
Analysis and Computation Directorate, 1968.

4. Origin Software Branch
Data Sciences Division
Attn: NR-A
White Sands Missile Range, NM 88002
1970

5. Comments

The filter is embedded in several modules which make up the Modu-
lar Integrated Processing System- (MIPS) of Data Sciences Division. The
Multiple Instrument Trajectory Module (MIT026) exercises the filtering
process most extensively. With this module,

a. observations are rotated to a common plane;

b. observations are filter-smoothed;

c. a set of predicted position, velocity, and acceleration com-
ponents are obtained;
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d. corrections for items such as refraction and velocity of
propagation are made;

e. initial editing is performed to eliminate observations that
have gross errors;

f. approximate position components are obtained using standard

weights;

g. weights are determined for position-related observations;

h. best estimate of position components is obtained;

i. final editing of position-related observations is performed;
(If any more position-related observations are rejected, steps f
through h are repeated.)

j. approximate velocity components are obtained using standard
weights;

k. weights are determined for velocity-related observations;

I. best estimate of velocity is obtained;

m. final editing of velocity-related observations are performed;
(If any more velocity-related observations are rejected, steps j
through I are repeated.)

n. approximate acceleration components are obtained using stand-

ard weights;

o. weights are determined for acceleration-related observations;

p. best estimate of acceleration components is obtained; and

q. final editing of acceleration-related observations is per-
formed. (If any more acceleration-related observations are rejected,
steps n through p are repeated.)
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M-STAT ION

1. Name or Acrdnym

M-Station

2. Contact Mr. Wen-Mi Liou
Pacific Missile Test Center
Code 3400
Point Mugu, CA 93042
(805) 989-7931
DSN: 351-7931

3. Documentation Sources

Liou, Wen-MI. "Square Root Information Filter/Smoother for
Multiple-Radar Tracking." Tech Note 3440-02-87. Point Mugu:
Pacific Missile Test Center. Mar. 1987.

4. Origin Pacific Missile Test Center
Code 3400
Point Mugu, CA 93042
1987

6. Comments

The square root information filter/smoother had been designed to
merge measurements from different radars to obtain the best estimate
of trajectory. The measurements consist of range, azimuth, elevation,
and range rate from radar tracking of up to 10 radars. This filter is
a version of the conventional nine-state extended Kalman filter but
has a fundamentally different approach to the optimal estimation prob-
lem. The whole updating process of the filter is founded on numeri-
cally stable, orthogonal transformation and preserves non-negativity
of computed covariances. An ad hoc procedure for adaptive estimation
had been implemented. In the implementation, the user has the options
to select the time span for smoothing and to apply more weight on the
measurements of some of the radars. Real radar tracking data were
used to test the filter/smoother; the test results were satisfactory.
In the testing, 100 data point smoothing was found adequate; conse-
quently, more data point smoothing provided no significant improve-
ment. This finding saves computer computation time and storage. As a
result of this finding, a better divergence control method is being
investigated.
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PBS PROGRAM, M-STATION

1. Nam or Acronym

Post Batch System (PBS) Program, M-Station

2. Contact Mr. Wen-Mi Liou
Pacific Missile Test Center
Code 3400
Point Mugu, CA 93042
(805) 989-7931
DSN: 351-7931

3. Documentation Sources

Powers, W. "Multiple Station Radar Solution, Part I, Method of
Calculation." Tech Note 3285-581. Point Mugu: Pacific
Missile Test Center. Sept. 1964.

4. Origin Pacific Missile Test Center
Code 3400
Point Mugu, CA 93042
1964

5. Comments

Radar measurements are inversely proportional to estimates of
their standard deviations. These weights are fixed and cannot change
as the distance between target and site change; thus, separate passes
are necessary during a tracking operation. The routine is fairly
robust to individual site errors as each observation is edited if it
exceeds a specified resldual; however, to work well generally, indi-
vidual radar data must be extensively pre-edited for on track (beacon)
times, and bias errors should be corrected through calibration. The
procedure produces a nine-state vector and its covariance matrix for
each time point and, additionally can estimate individual radar
biases.
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PBS PROGRAM, DERIVE

1. Name or Acronym

Post Batch System (PBS) Program, DERIVE

2. Contact Mr. Wan-MI Liou
Pacific Missile Test Center
Code 3400
Point Mugu, CA 93042
(805) 989-7931
DSN: 351-7931

3. Documentation Sources

Morris, G. "Polynomial Smoothing and Differentiation by Least
Squares." Working Note. Point Mugu: Pacific Missile Test Center,
Code 3442, 1965.

4. Origin Pacific Missile Test Center
Code 3400
Point Mugu, CA 93042
1965

5. Comments

This filter works well if data are well-approximAted by a given
quadratic expression. The tschnique may give poor estimation of end
points where midpoint computations are not applied. The improved rate
estimation is being examined through the PBS program, Optimum Finite
Impulse Response Linear Phase Digital Filter (OPFILT).
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PBS FILTER

1. Nm or Acronym

Post Batch System (PBS) Filter

2. Contact Mr. Won-Mi Liou
Pacific Missile Test Center
Code 3400
Point Mugu, CA 93042
(805) 989-7931
DSN: 361-7931

3. Documentation Sources

Welch, M. Working Note 3442-22-79. Point Mugu: Pacific Missile
Test Center, Code 3442, 1979.

4. Origin Pacific Missile Test Center
Code 3400
Point Mugu, CA 93042
196

5. Comments

This filter technique is superior to any time domain method for
post-operations analysis; however, the results are poor when signal
frequencies cannot be separated from noise frequencies or when the
signal lies partly In transition zones. The usual end point problems
occur because of the requirements for midpoint estimation. One solu-
tion to the end point problem Is to collapse or expand the data at the
ends, although the small filter size would result in a wide transition
zone. Response function improvement is possible through a computer-
aided design of filter weights. (See Post Batch System program Opti-
mum Finite Impulse Response Linear Phase Digital Filter (OPFILT).)
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PB3S PROGRAM. OPFILT

1. Nuns or Acronym

Post Batch System (PBS) Program, Optimum Finite Impulse Response
Linear Phase Digital Filter (OPFILT)

2. Contact Mr. Wen-Mi Liou
Pacific Missile Test Center
Code 3400
Point Mugu, CA 93042
(808) 989-7931
DSN: 361-7931

3. Documentation Sources

a. Liou, Wen-Mi. "Optimum Finite Impulse Response (FIR) Linear
Phase Digital Filters: Theory and Analysis of the McClellan-
Parks Algorithm." Tech Note 3442-02-82. Point Mugu: Pacific
Missile Test Center, May 1982.

b. McClellan, James A., Thomas W. Parks, and Lawrence R.
Rabiner. "A Computer Program for Designing Optimum FIR Lin-
ear Filters." IEEE Trans. Audio Electroacoustics. AU-21.6
(1973): 506-26.

4. Commnts

This general purpose filter design algorithm is capable of
designing a large class of optimum (in the minimax sense) finite
impulse linear phase digital filters such as low pass and high pass,
as well as first and second differentlators. The algorithm can also
be used to design filters which approximate arbitrary frequency
specifications provided by the user. The user has control over the
sizes of transition bands and ripples In both psasband and stop band.
The sharpening technique equipped with the filter design algorithm
further reduces the sizes of small ripples in the designs of low-pass,
high-pass, and band pass filters of any complexity. At the same time,
this technique increases the sharpness of the frequency response in
the transition bands.
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ATAGAS KALMAN FILTER

1. Naoe or Acronym

Air-to-Alr Gunnery Assessment System (ATAGAS) Kalman Filter

2. Contact Mr. Lee Gardner
6521 Range Squadron/RCP
Edwards AFB, CA 93523-5000
(805) 277-2628
DSN: 527-2628

3. Documentation Sources

Analytic Sciences Corporation. "Optimal Estimation for the Air-
to-Air Gunnery Assessment System, Final Program Review." Reading:
Analytic Sciences Corporation, n.d.

4. Orilin The Analytical Sciences Corporation
One Jacob Way
Reading, MA 01867
(617) 944-6850

6. Comnents

The Analytical Sciences Corporation has a report which describes
their evaluation of the filter's effectiveness. It was concluded that
the filter's effectiveness was better but very costly computer time-
wise.
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MOTION TRACKING KALMAN FILTER

1. Name or Acronym

Motion Tracking Kalman Filter

2. Contact Mr. Len Childers
6645 Test Group/ENAC
Hill AFB, UT 84066
(805) 777-8606
DSN: 458-8606

3. Documentation Sources

High Accuracy Multiple Object Tracking System (HAMOTS) Computer
Software Maintenance Manual, Dec. 1979.

4. Origin Messrs. Doug Troxler and Mick Chaplin
General Dynamics
Electronic. Division
San Diego, California

6. Comments

The filter does not handle wild points from input data as well as
expected.
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TEC TRACKER

1. Nw-w. e- Acronym

U.S Army TEXCOM Experimentation Center (TEC) Tracker (formerly
Combat Developments Experimentation Center (CDEC) Kalman Filter)

2. Contact Dr. Joseph M. Weinstein Ms. Julie Lemon
Scientific Support Scientific Support

Laboratory Laboratory
P.O. Box 100 P.O. Box 898
Fort Ord, CA 93491 Jolon, CA 93928
(408) 384-2161 (408) 385-2880

3. Documentation Sources

a. Weinstein, Joseph M. "Position Location Logic." TEC Scien-
tific Support Laboratory Document. Jolon: TEC Scientific
Support Laboratory, June 1988.

b. Weinstein, Josep, and othors. "Kalman Filter User Manual."
Revision I. CDEC Scientific Support Laboratory Document.
Jolon: CDEC Scientific Support Laboratory, July 1981.

4. Origin

Kalman tracking software developed by General Dynamics staff in
1971 was furnished to TEC for use with Range Measuring System (RMS)
hardware. The TEC has since upgraded tracking procedures, logic, and
code, notably around 1976 and 1980 but especially since 1987.

5. Comnents

Description. The TEC Tracker provides three-dimensional position
and , ,locity of ground and air players during instrumented field com-
bat simulations. This tracker is comprised of a Kalman filter and
several other real-time routines which together process ranges between
A and B units (RMS ranging and player units) as well as altimeter and
other input. Post-operation routines smooth and analyze tracking out-
put and apply alternative tracking algorithms to logged real-time input.

Performance. The tracker meets TEC's main real-time need for
tracking as many as 100 players reasonably well with 10 meters hori-
zontal error. As upgraded, the tracker reinitializes quickly as
needed, does not require time-clumped ranges to any given B-unit, and
prefiltgrs (with outlier reject;on) ranges between any given A,B pair
before using them In the Kalman filter.

Prospects. The Kalman computations are intensive and must rely
on predictive modeling of ground and air combat maneuver dynamics.
Recent study suggests that throughput and accuracy may gain from
replacing the Kalman filter by e simpler routine which relies just on
good quality measured inputs, for example, a linearized least squares
fit to the prefiltered ranges.
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DRIFT TRACKING KALMAN FILTER

1. Name or Acronym

Drift Tracking Kalman Filter

2. Contact Mr. Len Childers
6545 Test Group/ENAC
Hill AFB, UT 84056
(801) 777-8605
DSN: 458-8605

3. Documentation Sources

High Accuracy Multiple Ogject Tracking System (HAMOTS) Computer

Software Maintenance Manual. Dec. 1979.

4. Origin General Dynamics
Electronics Division
San Diego, California
1979

5. Comnents

This filter has not been used because score pod equipped vehicles

are not available at Utah Test and Training Range.
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EATS KALMAN FILTER

1. Name or Acronym

Extended Area Test System (EATS) Kalman Filter

2. Contact Ms. L. Wilson
Pacific Missile Test Center
Code 3452
Point Mugu, CA 93042
(805) 984-8784
DSN: 351-8784

3. Documentation Sources

The General Dynamics, Electronics Division, System Controller
Design document for EATS.

Any technical reference for Kalman filtering.

4. Origin General Dynamics
Electronics Division
San Diego, California
1978 to 1980

5. Comments

The EATS design requirements called for real-time state vector
estimation with accuracy constraints. This six-state Kalman design
provided the best alternative while satisfying design goals. Real-
time accuracies can be improved with finer tuning capability which is
currently available with tri-level (low-medium-high) dynamic tuning
parameter. This dynamic tuning parameter appears satisfactory for
most purposes. Post-operations accuracy improvement techniques are
currently under study.
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TRIDENT KALMAN FILTER

1. Name or Acronym

Trident Missile Tracking Kalman Filter

2. Contact Mr. Donald Olson Mr. Eric Senor
Pacific Missile Test Center Pacific Missile Test
Code 1051 Center, Code 3442
Point Mugu, CA 93042-5000 Point Mugu, CA 93042-5000
(805) 989-8804 (806) 989-7931
DSN: 351-8804 DSN: 351-7931

3. Documentation Sources

a. Gelb, Arthur. Applied Optimal Estimation. Cambridge: MIT P,
1974.

b. Olson, Donald. "Filter and Smoother for Trident Missile
Tracking." TP-64. Point Mugu: Pacific Missile Test Center,
June 1988.

4. Origin

Designed by Pacific Missile Test Center personnel, the prelim-
inary covariance simulations of the Trident Kalman filter began in
1977. These simulations led to the first operational version which
supported four missile tests in the Pacific during 1983-1984. In
1984, a major redesign effort resulted in a more reliable and accurate
second version which has supported 13 operational tests thus far.

5. Corments

For range safety redundancy, the nine-state extended Kalman
filter operates on two CDC Cyber 175 mainframes. Square-root filter-
ing was found to offer no advantage over standard covarlance filtering
in this application, presumably because of the large, 60-bit word size.
Measurements consist of range sums and range rate sums from five
transmitting stations operating 20 milliseconds apart. In addition,
pedestal angles at the receiving telemetry antenna are used. While
process noise is constant, the filter switches to a lower value at
third stage burnout. Constants are also used for measurement noise
standard deviations and edit limits.

Accurate initialization was found to be crucial to filter per-
formance throughout missile flight. The initial state estimate is
computed in a tangent plane, rectangular coordinate system. Ranging
data from three stations are filtered with a recursive, first-degree
polynomial filter, then used to solve for missile position and veloc-
ity. Because the z component of the ranging solution is inaccurate at
low elevations, z position and velocity are obtained from missile
telemetry. If telemetry is not available, the scheme defaults to a
combination of nominal date and the ranging solution.
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QD -WSMR

1. Name or Acronym

Quadratic Digital (QD) Filter

2. Contact Mr. John Falke
U.S. Army White Sands Missile Range

Attn: STEWS-NR-AR
White Sands Missile Range, NM 88002
(506) 678-3458
DSN: 258-3458

3. Documentation Sources

McCool, W. A. *QD-A New Efficient Digital Filter." Analysis and

Computation Directorate Internal Memorandum 60. White Sands
Missile Range: Analysis and Computation Directorate, August 1967.

4. Origin Mr. W. A. McCool
Acting Director
Analysis and Computation Directorate
White Sands Missile Range, NM 88002
August 1977

5. Comments

The quadratic digital filter's computing time is extremely small

and invariant with point span. It achieves smoothing effectiveness
almost identical to that of the comparable constrained least-squares
f i I ter.
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QD - EGLIN

1. Name or Acronym

Quadratic Digital (QD) Filter

2. Contact Mr. John E. Lindagren
3200 SPTW/KRTAR
Eglin AFB, FL 32542
(904) 882-4267
DSN: 872-4267

3. Origin Eglin AFB, Florida

4. Conents

Although this filter is efficient, extremely fast, easy to use,
and does not require extensive data arrays, its instabilities caused
by unedited wild points limits its use.
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QD - APO SAN FRANCISCO

1. Name or Acronym

Quadratic Digital (QD) Filter

2. Contact Mr. Sonny Padayhag
Kentron International, Incorporated
Box 1207
APO San Francisco, CA 96555
(805) 238-7994, Ext. 8-2020
DSN: 254-2020

3. Documentation Sources

Real-time program (RTP) or real-time impulse filter (RTIF)
documentation.

4. Comments

This filter works well for speedy execution and extrapolation of
small periods of time such as 200 milliseconds. It does not perform
well with exoatmospheric, ballistic trajectories and long extrapola-
tions or propagations.
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QD - YUMA

1. Name or Acronym

Quadratic Digital (QD) Filter

2. Contact Mr. Robert Mai
Yuma Proving Ground
Attn: STEYP-Mt-TA
Yuma, AZ 85365
(602) 328-3295
DSN: 899-3295

3. Documentation Sources

a. McCool, W. A. "QD-A New Efficient Digital Filter." Analysis
and Computation Directorate Internal Memorandum 60. White
Sands Missile Range: Analysis and Computation Directorate,
August 1967.

b. Mai, Robert W. "The QD Filter in YPG's Real-Time Laser
Display System." STEYP-MAC Document. Yuma: Yuma Proving
Ground.

4. Origin Mr. Robert Mal
Yuma Proving Ground
Attn: STEYP-MAC
Yuma, AZ 85365-9102
1974

5. Comments

The quadratic digital filter does a much better job of estimating
velocity than conventional least squares moving arc routines. Compu-
tation time is very small and does not depend on filter memory length.
This easy-to-use filter is very simple to put into computer code.
Filter response to impulse changes in acceleration Is slow, that is,
approximately two to three times the memory length selected, so filter
estimates are useful primarily during segments where acceleration is
minimal. The filter memory length, which determines the constant gain
coefficients for position, velocity, and acceleration, can be adjusted
to accommodate higher accelerations but then the noise on the filter
estimates increases. Perhaps the major drawback of the QD filter is
the difficulty in determining accuracy of velocity estimates which is
dependent upon the complex interaction of samplinC rate, target,
dynamics, filter memory length, and noise on the measurements.
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QUADRATIC POLYNOMIAL FILTER

1. Name or Acronym

Quadratic Polynomial Filter

2. Contact Dr. Floyd Hall
Naval Weapons Center
Code 62303
China Lake, CA 93556
(619) 939-6346
DSN: 437-6346

3. Documentation Sources

Gossett, Eric. "On-Axis Tracking System."

4. Comnents

This filter works quite well for real-time trajectory data from
radar or laser data. The quadratic polynomial filter is an K-0-1
filter based on two parameters. This filter is a little different
from what is expressed in Gossett's paper although it gives the same
results. The filter is not considered adequate for close-in targets
with tracking radar problems. Naval Weapons Center is currently
developing a filter that rectifies this inadequacy. The new filter
will have nonlinear constraints.
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QD - NATC

1. Name or Acronym

Quadratic Digital (QD) Filter

2. Contact Mr. John Shields
Naval Air Tost Center
Computer Sciences Division (CS35)
Patuxent River, MD 20670-5304
(301) 863-3396
DSN: 326-3396

3. Documentation Sources

McCool, W. A. "QD-A New Efficient Digital Filter." Analysis and
Computation Directorate Internal Memorandum 60. White Sands
Missile Range: Analysis and Computation Directorate, Aug. 1967.

4. Origin Mr. Frederick K. H. Hoeck
Computer Services Directorate
Patuxent River, MD 20670-5304
1979

5. Coiments

This filter is adequate for the application; however, as with all
filters, there is some setting time. Comparisons made to other data
sources were favorable. The filter requires little memory because
samples need not be stored. Constants need to be calculated based on
sample rate and number of points In the point span. It handles data
errors and recovers with few problems.
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AVRAGE

1. No, or Acronym

AVRAGE

2. Contact Mr. Ly V. Tran
6521 Range Squadron/RCP
Edwards AFB, CA 93523-5000
(805) 277-0871
DSN: 627-0871

3. Documentation Souroes

Computer Sciences Branch, 6521 Range Squadron, 6510 Test Wing.
"Average Data Smoothing Subroutine." Uniform Flight Test
Analysis System (UFTAS) Reference Manual. Chapter 8. Version
3.1. Edwards Air Force Base: Air Force Flight Test Center,
October 1990.

4. Origin Systems Development Corporation

June 1972

5. Comments

The AVRAGE gives an average of up to 61 consecutive input data
values.
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DUZ2

1. Name or Acronym

Differentiation by Least Squares Subroutine (DUZ2)

2. Contact Mr. Ly V. Tran Mr. Mike Tietz
6521 Range Squadron/RCP Computer Sciences Corporation
Edwards AFB, CA 93523 P.O. Box 446
(805) 277-0871 Edwards AFB, CA 93523
DSN: 527-0871 (805) 277-3800

DSN: 527-3800

3. Dogumentation Sources

Computer Sciences Branch, 6521 Range Squadron, 6510 Test Wing.
"Differentiation by Least Squares Subroutine (DUZk)." Uniform
Flig ht Test Analysis System (UFTAS)'Refbrence Manual. Chapter 20.
Version 3.1. Edwards Air Force Base: Air Force Flight Test Center,
October 1990.

4. Comments

The DUZ2 calculates smooth values as well as first and second
derivatives by fitting a least squares parabola. This subroutine
works well with low-angular acceleration but not with high-angular
accelerations. It is limited In how much data can be processed in one
call to the subroutine by the array sizes, because an excessive amount
of computer memory could be required.
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SD I FFR

1. Name or Acronym

Differentiation Subroutine (SDIFFR)

2. Contact Mr. Ly V. Tran
6521 Range Squadron/RCP
Edwardn AFB, CA 93523-6000
(805) 277-0871
DSN: 527-0871

3. Documentation Sources

Computer Sciences Branch, 6621 Range Squadron, 6510 Test Wing.
"Differentiation Subroutine (SDIFFR)." Uniform Flight Test
Analysis System (UFTAS) Reference Manual. Chapter 20. Version
3.1. Edwards Air Force Base: Air Force Flight Test Center,
October 1990.

4. OrJigin Messrs. R. C. Schram and R. T. Scott
White Sands Missile Range
New Mexico
July 1972

5. Conemnts

Basically, the SDIFFR functions as a single-parameter, cycling
DIRSIT which c-eates parameter arrays containing up to 60 time points
of smooth values, first derivatives, and second derivatives as desired.
The SDIFFR is slightly different from DIRSIT In that it is called once
for each desired parameter, initializing (if reqjested), and process-
ing up to 60 points and then returns. Thus, SDIFFR cycles up to 60
points inside itself for 1 parameter Instead of being called up to 60
times.

As a method of computation, the InitjIaization is accomplished by
fitting a least squares parabola and using a maximum likelihood proce-
dure to the first user-designated interval input data points. The
DIRSIT process then takes over for subsequent points. Because this
process is not self-starting, at least the first interval of points
should be allowed at the beginning for start-up. Once the DIRSIT pro-
cess begins, a second-order Taylor series expansion is adjusted ac-
cording to certain statistical criteria until the number of points
above the curve differs from the number below the curve by a user-
designated amount.

The first and second derivatives of the resulting second-order
curve are taken as the derivatives at the first of the interval. The
interval is then moved by one point, and the process continued until
the end of data is reached. At the end of the data, the interval size
is collapsed until only one point remains. The derivatives for the
last point are set equal to the derivative of the next to the last
point. Because of this interval collapsing, up to INPTS-1 points
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should be disregarded at the end of the data, where INPTS Is the
number of points in the interval.

A wild point has only minimal effect on the DIRSIt process since
the only test made Is whether it is above or below the curve. How far
above or below Is of little importance.

The conditions of validity are listed below.

a. Care should be taken to avoid processing large discontinu-
Ities; however, time increments need not necessarily be constant.

b. The appropriate slope parameter and tolerance criteria
parameter must be provided to ensure valid results.

c. The number of input data points per parameter is limited to
60 for each call. More points can be accormodated through multiple
calls to SDIFFR.

d. The SDIFFR is not a self-starting routine. The initial-
ization process requires a number of points to get things moving, so
the first several time points of derived values will be poor approxi-
mations.

e. The SDIFFR uses a collapsing technique to process the last
Interval of time points, but the results for these last several points
(INPTS-1) become increasingly degraded as SDIFFR is forced to work on
smaller and smaller intervals.

f. The calling program for SDIFFR uses an overlapping technique
to avoid including the Invalid results at the beginning and end of
each array processed. A check should be made to ensure that the
overlap is adequate so that no major discontinuities appear at each
overlap point.

g. The calling program for SDIFFR uses a default interval size
which the user may change.
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DIRSIT

1. Name or Acronym

Derivative Inform&Lon Recovery by a Selective Integration
Technique (DIRSIT)

2. Contact Mr. Len ChildErs
6545 Test Group/ENAC
Bidg 1284
Hill AFB, UT 84056
(801) 777-8605
DSN: 458-8605

3. Documentation Sources

Utah Test and Training Range postflight data reduction documents.

4. Origin Mr. Len Childers
6545 Test Group/ENAC
Hill AFB, UT 84056-5000
(Adaptation of SDIFFR)
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UFTAS FILTER OVERLAY

1. Name or Acronymi

Uniform Flight Test Analysis System (UFTAS) Digital Filtering
Primary Overlay (FILTER)

2. Contact Dr. William G. Kitto Mr. Ly V. Tran
6521 Range Squldron/RCP 6521 Range Squadron/RCP
Edwards AFB, CA 93523 Edwards AFB, CA 93523-5000
(805) 277-3198 (805) 277-0871
DSN: 527-3198 DSN: 527-0871

3. I2cumentation Sources

Computer Sciences Branch, 6521 Rangg Squadron, 6610 Test Wing.
"UFTAS Digital Filtering Primary Overlay (FILTERI." Uniform
Flight Test Analysis System (UFTAS) Reference Manul. Version
3.1. Edwards Air Force Base: Air Force Flight Test Center,
Oct. 1990.

4. Origin Dr. William G. Kitto

1982

5. Comments

Currently, this filter is used heavily in the Frequency Response
Analysis (FRA) program. (Butterworth or User Supplied Weight Type
filter.)
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BET

1. Name or Acronym

Best Estimate of Trajectory (BET)

2. Contact Mr. Robert Mal
Yuma Proving Ground
Attn: STEYP-MT-TA
Yuma, AZ 85365
(602) 328-3296
DSN: 899-3296

3. Documentation Sources

Liebelt, Paul B. An Introduction to Optimal Estimation.
Reading: Addison-Wesley, 1967.

4. Origin Mr. Robert Mai
Yuma Proving Ground
Attn: STEYP-MAC
Yuma, AZ 85365
1976

5. Comments

The Kalman filter and Rauch-Tung-Striebel smoother take range,
range rate, azimuth, elevation, and apparent angle measurements from
up to 20 instruments and based upon a priori statistical information
about the trajectory, the measurements, and the initial conditions,
optimal stimates of the state vector are computed at each of the
measurement times. The state vector size is expandable from the basic
three components (x,y,z coordinate system) to include up to five
derivatives: measurement source, pitch, yaw, pitch rate, and yaw rate.
Estimates of the state vector are optimal in the sense that the uncer-
tainty in each component of the state vector is minimized. This BET
can provide excellent results; however, the results are only as good
as the a priori statistical information. For applications where
knowledge of measurement uncertainty and dynamics in the trajectory
are well known or easily estimated, then the BET will undoubtedly
provide very close to the absolute best estimate. If the a priori
statistics distort the truth, then the BET trajectory will be dis-
torted. In actual practice at Yuma Proving Ground, a BET trajectory
is derived in an interactive fashion. Initial runs are made with a
priori statistics implying more uncertainty than is actually present.
Then analysis of the measurement residuals and estimated dynamics are
used to refine the a priori estimates. A new BET trajectory is then
generated and analysis of residuals and dynamics undi rtaken. This
process continues until the a priori statistics match the derived
estimates.

There are significant disadvantages to using the BET. Althc.ugh
the program setup is very complex and tedious, obtaining a priori
statistical information is often perceived as an art rather than a
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science. Errors In setup or in judgment almost always have a detri-
mental effect on the final estimates. In addition, computation time
Is very long, and the required iterative process can cause data turn-
around time to expand to. longer than two weeks. So if you want the
very best, you must be willing to pay for Itl
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RTUF

1. Name or Acronym

Real-Time Update Filter (RTUF)

2. Contact Mr. Andy Roy or Joe Warren Mr. J. V. Copp
Computer Sciences Raytheon Computer Sciences

Unit 2310 Raytheon
Eastern Space and Missile Eastern Space and

Center Missile Center
Patrick AFB, FL 32925 Patrick AFB, FL 32925
(407) 494-7133 (407) 853-7783
DSN: 854-7133

3. Origin Ms. Marie Colmer and Mr. Royal Pepple
RCA/MTP
Eastern Space and Missile Center
Patrick AFB, FL 32925
1971

4. Corments

This filter is used mainly for the Missile Precision Instruction
Radar (MIPIR) class of radars. These radars are large-scale. The
RTUF is recursive, adaptive, exponentially weighted, and has fading
memory. By adaptive, it is meant that the filter can adjust as the
data gets seemingly noisier or less noisy. As the data becomes
noisier, the bandwidth Is decreased, and as the data becomes less
noisy the bandwidth increases. In an adaptive filter, the coeffi-
cients of the terms involving the difference between the predicted
value and the given raw value vary with time. In an exponentially
weighted filter such as this one, the coefficients have the time
variable as part of their exponents. In a fading-memory filter, the
memory fades with time. In this case, the memory fades exponentially.
In other words, newer data are weighted considerably more than older
data when predicting a new value.

The RTUF is a simple filter because it does not work with partial
derivatives or matrices. For this reason, Mr. Joe Warren says that
this filter was good in the 1960s when computers were slower and had
less memory. Mr. Warren predicts that no more RTUFs will be used
within two to three years and suggests using a Kalman-type filter in
lieu of this one.
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RFILTR

1. Name or Acronym

Real-Time Software System (RFILTR)

2. Contact Mr. Robert Crolene
Pacific Missile Test Center (formerly Pacific
Missile Range (PMR))

Code 1074
Point Mugu, CA 93042
(805) 982-8073
DSN: 351-8073

3. Documentation Sources

Cragun, G. C. "Real-Time Data Filtering." PMR Tech Note
3285-576. Point Mugu: Pacific Missile Range.

4. Origin NAMTC
Code 3400
1965

5. Comnents

The RFILTR is a simple, exponential adaptive filter. The advan-
tage of this filter Is its simplicity. Upgrading can be achieved with
some adaptive smoothing controls by basing it on residuals or by
employing a Kalman algorithm. However, this step would complicate
filter operations and may not be practical for the software system of
the Univac 1230 for which this filter was originally designed. Up-
grading the filter for use in a mainframe computer should present no
problems.

Major problems with this filter are smoothing control and ini-
tialization variance control. Correcting one control usually makes
the other one worse. Initialization errors are especially large for
velocities and accelerations.
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RCHECK

1. Name or Acronym

Rate Check Data Smoothing Subro ins (RCHECK)

2. Contact Mr. Ly V. Tran
6521 Range Squadron/RCP
Edwards AFB, CA 93523-6000
(805) 277-0871
DSN: 527-0871

3. Documentation Sources

Computer Sciences Branch, 6521 Range Squadron, 6510 Test Wing.
"Rate Check Data Smoothing Subroutine (RCHECK)." Uniform Flight
Test Analysis System (UFTAS) Reference Manual. Chapter 8. Ver-
sion 3.1. Edwards Air Force Base: Air Force Flight Test Center,
October 1990.

4. Origin Mr. G. A. Lott
Lockheed-Georgia Company
June 1972

The RCHECK was successfully used by the Lockheed-Georgia Company
in processing C-5A test data and was later modified to fit Into UFTAS.

5. Comnents

This subroutine searches for wild points by comparing DLY, the
absolute difference between the current and previous point values,
with TOL, a linear function of the average of successive differences
within a given interval. The TOL represents the tolerance limit for
the interval's data variations. The multiplicative and additive
factors of this linear function are user-supplied. The TOL is
increased or decreased from point to point according as DLY is greater
than or less than TOL. In addition, if DLY is greater than or equal
to TOL, the current data value is replaced by the last valid one.
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EYBALL

1. Name or Acronym

Eyball Data Smoothing Subroutine (EYBALL)

2. Contact Mr. Ly V. Tran
6521 Range Squadron/RCP
Edwards AFB CA 93S23-5000
(805) 277-0871
DSN: 527-0871

3. Documentation Sources

Computer Sciences Branch, 6521 Range Squadron, 6510 Test Wing.
"Eyball Data Smoothing Subroutine (EYBALL)." Uniform Flight Test
Analysis System (UFTAS) Reference Manual. Version 3.1. Edwards
Air Force Base: Air Force Flight Test Center, October 1990.

4. Orlgin Mr. C. F. Carpenter Capt J. H. Pierson, USAF
General Dynamics Edwards AFB, CA

July 1972

5. Coments

The user specifies a value DELTA that represents the difference
between the maximum and minimum values for a given parameter. The
value of DELTA is based on the user's prior knowledge of what values
the parameter should take.

If the actual range of values within the interval is less than or
equal to DELTA, then the output parameter value is the average of the
values in the interval. If the range is greater than DELTA, then the
weighted average of the most common values in the interval, with the
more central values given the greater weight, Is the output parameter
value.

The advantages of the EYBALL subroutine are

a. the EYBALL closely approximates intuitive treatment of data,

b. the user has control by using prior knowledge of the
parameter,

c. the wild points are discarded before determination of the
output parameter value, and

d. the excessive wild points are identified.
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ON-AXIS

1. Name or Acronym

On-Axis Radar Target Tracking System (ON-AXIS)

2. Contact Mr. John E. Lindegren
3200 SPTW/KRTAR
Eglin AFB, FL 32542
(904) 882-4267
DSN: 872-4267

3. Documentation Sources

"On-Axis: Philosophy/Technology/Development." Advanced Research
Project Agency, Radar Microwave Link Tech Memo 211. Patrick AFB:
Advanced Research Project Agency, Radar Microwave Link, 15 Dec
1970.

4. Origin Advanced Research Project Agency, Radar
Microwave Link

Patrick AFB, Florida
1969

Modified: Air Force Development Test Center
AFDTC/KR
Eglin AFB, Florida
1973

5. Comments

Strengths of this filter include self-calibration capability
through stellar track; adaptive track gain with smooth, low-noise
track; and predetermined missile trajectory slew at launch.

This filter's weaknesses consist of requiring a well-qualified
crew and careful maintenance and software control of the computer
system and data base. The On-Axis track accuracy (with pedestal posi-
tion pick-offs) offers no significant improvement over normal
AN/FPS-16 TSPI for aerodynamic maneuvering targets if standard post-
mission smoothing procedures (moving-arc-polynomial midpoint fits to
raw data) are used.
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DYN043

1. Name or Acronym

DYN043

2. Contact Mr. Robert Fierro
U.S. Army White Sands Missile Range
Attn: STEWS-NR-AM
White Sands Missile Range, NM 88002
(505) 678-2543
DSN: 258-2543

3. Documeptation Sporcei

a. Comstock, D., M. Wright, and V. Tipton. "Handbook of Data
Reduction Methods." Data Reduction Division Tech Rept. White
Sands Missile Range: Data Reduction Division, 13 Aug 1964.

b. Comstock D. introduction to Least Squares. White Sands
Missile Range: Analysis and Computation Directorate, 1968.

4. Origin Classical Least Squares Smoothing

August 1970

5. Comments

The filter derives smooth data from observation using the least
squares moving arc method. The smoothed positions are differentiated
to obtain velocities which, in turn, are differentiated to obtain
accelerations.
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GNFL

1. Name or Acronym

Gennery Filter (GNFL)

2. Contact Dr. Kenneth Lane
CSR 3200
P.O. Box 4127
Patrick AFB, FL 32926

3. Documentation Sources

a. Computer Program 285, GNFL

b. Gennery, Donald B. "An Improved Digital Filter." Mathemati-
cal Services TM-63-8, Dec. 1963.

4. Oriin Mr. Donald B. Gennery
1963

5. Comments

Thic filter is designed to give a frequency response with sharper
roll-off and with increased attenuation at higher frequencies when
compared to standard least squares polynomial filters.
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GNSM

1. Name or Acronym

Gennery Smoother (GNSM)

2. Conf.act Dr. Kenneth Lane
CSR 3200
P.O. Box 4127
Patrick AFB, FL 32925

3. Documentation Sources

a. Computer Program 586, GNSM

b. Gennery, Donald B. "Direct Digital Filters for General
Purpose Use." RCA Document. Patrick AFB: RCA/MTP, Jal.
1966.

4. Origin Mr. Donald B. Gennery
1966

5. Comments

Designed as an improvement of the GNFL filter with sharper roll-
off, this filter has the additionai feature of being able to bridge
discontinuities in the derivatives of the input data.
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F I RF I LT

1. Name or Acronym

Finite Impulse Response Filter (FIRFILT)

2. Contact Mr. Jerry Biedscheid
Sandia National Laboratories
Division 7522
P.O. Box 5800
Albuquerque, NM 87185
(505) 844-4048
DSN: 244-4048

3. Documentation Sources

McClellan, James A., Thomas W. Parks, and Lawrence R. Rabiner.
"A Computer Program for Designing Optimum FIR Linear Phase
Digital Filters." IEEE Trans. Audio Electroacoust. AU-21.6
(1973): 506-26.

4. Origin Mr. D. J. Miller
Sandia National Laboratories
Division 1414
P.O. Box 5800
Albuquerque, NM 87185
1980

5. Comments

This filter gives good results in low dynamic situations, but the
filter is difficult to control.
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1. Name or ArBoXvM

RECFLT

2. Contact IMr. tz. . $.r tz
Sad ,, ##;J 9,n lI -Labor ator i es

'P. .. ,X x0.
Al.buquerque, ,NM 87185

!' )'"44-22_37

3. Documentat ion ourge

Stearns, S. D. Digit4,l 4,igngj Anlyr,is. 'Qche,ll,e Park: Hayden,
1975.

4. Origin Mr. 0. J. Viller
Said~i. , 1atlonalI L .bora%0r i.s

D1v isI9,n 7524

P.O. Box 5800
Albuquerque, NM 87185
1980

5. Comments

This filter provides exctl lent results, pa.rticulprly wit-h large

data sets using the phase shift removal option.
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F I LMAX

1. Nam or Acron

FI LMAX

2. Contact Mr. D. 0. Smallwood
Sandia National Laboratories
Division 7544
P.O. Box 5800
Albuquerque, NM 87185
(505) 844-1074
DSN: 244-1074

3. Docuentation Sources

Smallwood, D. 0. "An Improved Recursive Formula for Calculating
Shock Response Spectra." Shock and Vibration Bulletin. 51.2
(1981): 211-17.

4. Origin Mr. D. 0. Smallwood
Sandia National Laboratories
Division 7544
1979

5. Comments

The older recursive models of this filter used for calculat-
ing the shock response spectra resulted in significant errors when the
natural frequency exceeded one-sixth of the sample rate. This new
filter avoids the problem.
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MDPT6 1

1. Name or Acronm

MDPT51

2. Contact Mr. J. A. Ward
Easternl Space and Missile Center
RCA/MTP
Patrick AFB, FL 32935

3. Documentation Sources

a. RAID Computer Program

b. "Filtering Tracking Data for Range Safety Displays." RCA

Document. Patrick AFS: RCA/MTP, Jan. 1984.
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BSMW

1. Name or Acronym

BSMW

2. Contact Mr. J. A. Ward
Computer Sciences Raytheon
Eastern Space and Missile Center
Patrick AFB, FL. 32925

3. Documentation Sources

a. RAID Computer Program

b. "Filtering Tracking Data for Range Safety Displays." RCA
Document. Patrick AFB: RCA/MTP, January 1984.

4. Connents

The BSMW is a quadratic filter that is recursive but not adap-
tive. (A nonadaptive filter is a filter with a fixed bandwidth. The
coefficients of the terms involving the difference between the pre-
dicted value and the given raw value are constant; they do not vary
with the perceived noise content of the data.)
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1. Nam or Acronym

SMW

2. Contact Mr. J. A. Ward
Computer Sciences Raytheon
Eastern Space and Missile Center
Patrick AFB, FL 32925

3. Documentation Sources

a. RAID Computer Program

b. "Filtering Tracking Data for Range Safety Displays." RCA
Document. Patrick AFB: RCAtMTP, January 1984.

4. Comments

The SMW is a linear filter that Is recursive but not adaptive.
(A nonadaptive filter is a filter vith a fixed bandwidth. The coeffi-
cients of the terms involving the difference betwren the predicted
value and the given raw value are constant; they do not vary with the
perceived noise content of the data.)
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FREQUENCY RESPONSE ANALYSIS

1. Name or Acronym

Frequency Response Analysis (FRA)

2. Contact Mr. Barry Mishler
6521 Range Squadron/RCP
Edwards, CA 93523-5000
(805) 277-6040
DSN: 527-6040

3. Documentation Sources

Computer Sciences Branch, 6521 Range Squadron, 6510 Test Wing.
"Frequency Response Analysis (FRA) Overlay." Uniform Flight Test
Analysis System (UFTAS) Reference Manual. Version 3.1. Edwards
Air Force Base: Air Force Flight Test Center, Oct. 1990.

4. Origin Mr. Tom Twisdale Dr. William G. Kitto
6510 Test Wing/DOEF 6521 Range Squadron/RCP
Edwards AFB, CA 93523-5000 Edwards AFB, CA 93523-5000
(805) 277-1248 (805) 277-3198
DSN: 527-1248 DSN: 527-3198

5. Comments

The Frequency Response Analysis program transfers the dynamic
time domain data into the frequency domain to do the frequency
response analysis specified by the user. Power spectral densities,

transfer functions, and coherence functions can be calculated in the
frequency domain. The dynamic time domain data are contained on either
a B-file or a C-file. After the desired analysis is complete, FRA can
put the frequency domain results back into the time domain.

The FRA program is not a filter. This program is meant to aid
the user in determining what filter to use and how to use it. For
instance, the FRA can aid in determining what cutoff frequencies
should be in the frequency spectrum or if the filter should be band-
limited or nonbandlimited. At the present time, the program cannot
accept more than 1024 time points. It uses the first 1024 time points
received and discards the rest of the points.
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